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PREFACE

The reason for writing this book was due to the fact that modern intro-
ductory textbooks (not only in physics, but also mathematics, psychology,
chemistry) are simply not useful to either students or instructors. The typ-
ical freshman textbook in physics, and other fields, is over 1000 pages long,
with maybe 40 chapters and over 100 problems per chapter. This is overkill!
A typical semester is 15 weeks long, giving 30 weeks at best for a year long
course. At the fastest possible rate, we can ”cover” only one chapter per
week. For a year long course that is 30 chapters at best. Thus ten chapters
of the typical book are left out! 1500 pages divided by 30 weeks is about 50
pages per week. The typical text is quite densed mathematics and physics
and it’s simply impossible for a student to read all of this in the detail re-
quired. Also with 100 problems per chapter, it’s not possible for a student to
do 100 problems each week. Thus it is impossible for a student to fully read
and do all the problems in the standard introductory books. Thus these
books are not useful to students or instructors teaching the typical course!

In defense of the typical introductory textbook, I will say that their
content is usually excellent and very well writtten. They are certainly very
fine reference books, but I believe they are poor text books. Now I know
what publishers and authors say of these books. Students and instructors
are supposed to only cover a selection of the material. The books are written
so that an instructor can pick and choose the topics that are deemed best
for the course, and the same goes for the problems. However I object to
this. At the end of the typical course, students and instructors are left with
a feeling of incompleteness, having usually covered only about half of the
book and only about ten percent of the problems. I want a textbook that is
self contained. As an instructor, I want to be able to comfortably cover one
short chapter each week, and to have each student read the entire chapter
and do every problem. I want to say to the students at the beginning of
the course that they should read the entire book from cover to cover and do
every problem. If they have done that, they will have a good knowledge of
introductory physics.

This is why I have written this book. Actually it is based on the in-
troductory physics textbook by Halliday, Resnick and Walker [Fundamental
of Physics, 5th ed., by Halliday, Resnick and Walker, (Wiley, New York,
1997)], which is an outstanding introductory physics reference book. I had
been using that book in my course, but could not cover it all due to the
reasons listed above.
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Availability of this eBook

At the moment this book is freely available on the world wide web and
can be downloaded as a pdf file. The book is still in progress and will be
updated and improved from time to time.
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INTRODUCTION - What is Physics?

A good way to define physics is to use what philosophers call an ostensive
definition, i.e. a way of defining something by pointing out examples.

Physics studies the following general topics, such as:
Motion (this semester)
Thermodynamics (this semester)
Electricity and Magnetism
Optics and Lasers
Relativity
Quantum mechanics
Astronomy, Astrophysics and Cosmology
Nuclear Physics
Condensed Matter Physics
Atoms and Molecules
Biophysics
Solids, Liquids, Gases
Electronics
Geophysics
Acoustics
Elementary particles
Materials science

Thus physics is a very fundamental science which explores nature from
the scale of the tiniest particles to the behaviour of the universe and many
things in between. Most of the other sciences such as biology, chemistry,
geology, medicine rely heavily on techniques and ideas from physics. For
example, many of the diagnostic instruments used in medicine (MRI, x-ray)
were developed by physicists. All fields of technology and engineering are
very strongly based on physics principles. Much of the electronics and com-
puter industry is based on physics principles. Much of the communication
today occurs via fiber optical cables which were developed from studies in
physics. Also the World Wide Web was invented at the famous physics
laboratory called the European Center for Nuclear Research (CERN). Thus
anyone who plans to work in any sort of technical area needs to know the
basics of physics. This is what an introductory physics course is all about,
namely getting to know the basic principles upon which most of our modern
technological society is based.



Chapter 1

MOTION ALONG A
STRAIGHT LINE

SUGGESTED HOME EXPERIMENT:
Design a simple experiment which shows that objects of different weight

fall at the same rate if the effect of air resistance is eliminated.

THEMES:
1. DRIVING YOUR CAR.
2. DROPPING AN OBJECT.

11



12 CHAPTER 1. MOTION ALONG A STRAIGHT LINE

INTRODUCTION:
There are two themes we will deal with in this chapter. They concern

DRIVING YOUR CAR and DROPPING AN OBJECT.
When you drive you car and go on a journey there are several things

you are interested in. Typically these are distance travelled and the speed
with which you travel. Often you want to know how long a journey will
take if you drive at a certain speed over a certain distance. Also you are
often interested in the acceleration of your car, especially for a very short
journey such as a little speed race with you and your friend. You want to
be able to accelerate quickly. In this chapter we will spend a lot of time
studying the concepts of distance, speed and acceleration.

LECTURE DEMONSTRATION:
1) Drop a ball and hold at different heights; it goes faster at bottom if

released from different heights
2) Drop a ball and a pen (different weights - weigh on balance and show

they are different weight); both hit the ground at the same time

Another item of interest is what happens when an object is dropped
from a certain height. If you drop a ball you know it starts off with zero
speed and ends up hitting the ground with a large speed. Actually, if you
think about it, that’s a pretty amazing phenomenom. WHY did the speed
of the ball increase ? You might say gravity. But what’s that ? The speed
of the ball increased, and therefore gravity provided an acceleration. But
how ? Why ? When ?

We shall address all of these deep questions in this chapter.

1.1 Motion

Read.

1.2 Position and Displacement

In 1-dimension, positions are measured along the x-axis with respect to some
origin. It is up to us to define where to put the origin, because the x-axis is
just something we invented to put on top of, say a real landscape.
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Example Chicago is 100 miles south of Milwaukee and Glendale
is 10 miles north of Milwaukee.

A. If we define the origin of the x-axis to be at Glendale what is
the position of someone in Chicago, Milwaukee and Glendale ?

B. If we define the origin of x-axis to be at Milwaukee, what is
the position of someone in Chicago, Milwaukee and Glendale ?

Solution A. For someone in Chicago, x = 110 miles.

For someone in Milwaukee, x = 10 miles.

For someone in Glendale, x = 0 miles.

B. For someone in Chicago, x = 100 miles.

For someone in Milwaukee, x = 0 miles.

For someone in Glendale, x = −10 miles.

Displacement is defined as a change in position. Specifically,

∆x ≡ x2 − x1 (1.1)

Note: We always write ∆anything ≡ anthing2−anything1 where anything2

is the final value and anything1 is the initial value. Sometimes you will
instead see it written as ∆anything ≡ anthingf − anythingi where sub-
scripts f and i are used for the final and initial values instead of the 2 and
1 subscripts.

Example What is the displacement for someone driving from
Milwaukee to Chicago ? What is the distance ?

Solution With the origin at Milwaukee, then the initial position
is x1 = 0 miles and the final position is x2 = 100 miles, so that
∆x = x2 − x1 = 100 miles. You get the same answer with the
origin defined at Gendale. Try it.

The distance is also 100 miles.
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Example What is the displacement for someone driving from
Milwaukee to Chicago and back ? What is the distance ?

Solution With the origin at Milwaukee, then the initial position
is x1 = 0 miles and the final position is also x2 = 0 miles, so
that ∆x = x2 − x1 = 0 miles. Thus there is no displacement if
the beginning and end points are the same. You get the same
answer with the origin defined at Gendale. Try it.

The distance is 200 miles.

Note that the distance is what the odometer on your car reads. The
odometer does not read displacement (except if displacment and distance
are the same, as is the case for a one way straight line journey).

Do Checkpoint 1 [from Halliday].

1.3 Average Velocity and Average Speed

Average velocity is defined as the ratio of displacement divided by the corre-
sponding time interval.

v̄ ≡ ∆x
∆t

=
x2 − x1

t2 − t1
(1.2)

whereas average speed is just the total distance divided by the time interval,

s̄ ≡ total distance

∆t
(1.3)
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Example What is the average velocity and averge speed for
someone driving from Milwaukee to Chicago who takes 2 hours
for the journey ?

Solution ∆x = 100 miles and ∆t = 2 hours, giving v̄ = 100 miles
2 hours =

50mileshour ≡ 50 miles per hour ≡ 50 mph.

Note that the unit miles
hour has been re-written as miles per hour.

This is standard. We can always write any fraction a
b as a per b.

The word per just means divide.

The average speed is the same as average velocity in this case
because the total distance is the same as the displacement. Thus
s̄ = 50 mph.

Example What is the average velocity and averge speed for
someone driving from Milwaukee to Chicago and back to Mil-
waukee who takes 4 hours for the journey ?

Solution ∆x = 0 miles and ∆t = 2 hours, giving v̄ = 0 !

However the total distance is 200 miles completed in 4 hours
giving s̄ = 200 miles

4 hours = 50 mph again.
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A very important thing to understand is how to read graphs of position
and time and graphs of velocity and time, and how to interpret such graphs.

It is very important to understand how the average velocity is
obtained from a position-time graph. See Fig. 2-4 in Halliday.

LECTURE DEMONSTRATION:
1) Air track glider standing still
2) Air track glider moving at constant speed.

Let’s plot an x, t and v, t graph for
1) Object standing still,
2) Object at constant speed.

Note that the v, t graph is the slope of the x, t graph.

t

x

t

v

t

t

x

t

v

t
(A) (B)

FIGURE 2.1 Position - time and Velocity - time graphs for A) object
standing still and B) object moving at constant speed.

Careully study Sample Problems 2-1, 2-2, Checkpoint 2 and
Sample Problem 2-3. [from Halliday]
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1.4 Instantaneous Velocity and Speed

When you drive to Chicago with an average velocity of 50 mph you probably
don’t drive at this velocity the whole way. Sometimes you might pass a truck
and drive at 70 mph and when you get stuck in the traffic jams you might
only drive at 20 mph.

Now when the police use their radar gun and clock you at 70 mph, you
might legitimately protest to the officer that your average velocity for the
whole trip was only 50 mph and therefore you don’t deserve a speeding
ticket. However, as we all know police officers don’t care about average ve-
locity or average speed. They only care about your speed at the instant that
you pass them. Thus let’s introduce the concept of instantaneous velocity
and instantaneous speed.

What is an instant ? It is nothing more than an extremely short time
interval. The way to describe this mathematically is to say that an instant
is when the time interval ∆t approaches zero, or the limit of ∆t as ∆t→ 0
(approaches zero). We denote such a tiny time interval as dt instead of ∆t.
The corresponding distance that we travel over that tiny time interval will
also be tiny and we denote that as dx instead of ∆x.

Thus instantaneous velocity or just velocity is defined as

v = lim
∆t→0

∆x
∆t

=
dx

dt
(1.4)

Now such a fraction of one tiny dx divided by a tiny dt has a special name.
It is called the derivative of x with respect to t.

The instantaneous speed or just speed is defined as simply the
magnitude of the instantaneous veloctiy or magnitude of velocity.

Carefully study Sample Problem 2-4 [from Halliday].
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1.5 Acceleration

We have seen that velocity tells us how quickly position changes. Accelera-
tion tells us how much velocity changes. The average acceleration is defined
as

ā =
v2 − v1

t2 − t1
=

∆v
∆t

and the instantaneous acceleration or just acceleration is defined as

a =
dv

dt

Now because v = dx
dt we can write a = d

dtv = d
dt

(
dx
dt

)
which is often written

instead as d
dt

(
dx
dt

)
≡ d2x

dt2
, that is the second derivative of position with

respect to time.

Example When driving your car, what is your average acceler-
ation if you are able to reach 20mph from rest in 5 seconds ?

Solution

v2 = 20 mph v1 = 0
t2 = 5 seconds t1 = 0

ā =
20 mph− 0

5 sec− 0
=

20 miles per hour
5 seconds

= 4
miles

hour seconds
= 4 mph per sec

= 4
miles

hour 1
3600 hour

= 14, 400 miles per hour2
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LECTURE DEMONSTRATION (previous demo continued):
1) Air track glider standing still
2) Air track glider moving at constant speed.

Now let’s also plot an a, t graph for
1) Object standing still,
2) Object at constant speed.

Note that the the a, t graph is the slope of the v, t graph.

t

a

t
(A)

t

a

t
(B)

FIGURE 2.2 Acceleration-time graphs for motion depicted in Fig. 2.1.



20 CHAPTER 1. MOTION ALONG A STRAIGHT LINE

1.6 Constant Acceleration: A Special Case

Velocity describes changing position and acceleration describes changing ve-
locity. A quantity called jerk describes changing acceleration. However, very
often the acceleration is constant, and we don’t consider jerk. When driving
your car the acceleration is usually constant when you speed up or slow
down or put on the brakes. (When you slow down or put on the brakes the
acceleration is constant but negative and is called deceleration.) When you
drop an object and it falls to the ground it also has a constant acceleration.

When the acceleration is constant, then we can derive 5 very handy
equations that will tell us everything about the motion. Let’s derive them
and then study some examples.

We are going to use the following symbols:

t1 ≡ 0
t2 ≡ t
x1 ≡ x0

x2 ≡ x
v1 ≡ v0

v2 ≡ v

and acceleration a is a constant and so a1 = a2 = a. Thus now

∆t = t2 − t1 = t− 0 = t

∆x = x2 − x1 = x− x0

∆v = v2 − v1 = v − v0

∆a = a2 − a1 = a− a = 0

(∆a must be zero because we are only considering constant a.)
Also, because acceleration is constant then average acceleration is always

the same as instantaneous acceleration

ā = a

Now use the definition of average acceleration

ā = a =
∆v
∆t

=
v − v0

t− 0
=
v − v0

t

Thus
at = v − v0

or
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v = v0 + at

(1.5)

which is the first of our constant acceleration equations. If you plot this on
a v, t graph, then it is a straight line for a = constant. In that case the
average velocity is

v̄ =
1
2

(v + v0)

From the definition of average velocity

v̄ =
∆x
∆t

=
x− x0

t

we have

x− x0

t
=

1
2

(v + v0)

=
1
2

(v0 + at+ v0)

giving

x− x0 = v0t+
1
2
at2

(1.6)

which is the second of our constant acceleration equations. To get the other
three constant acceleration equations, we just combine the first two.
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Example Prove that v2 = v2
0 + 2a(x− x0)

Solution Obviously t has been eliminated. From (1.5)

t =
v − v0

a

Substituting into (1.6) gives

x− x0 = v0

(
v − v0

a

)
+

1
2
a

(
v − v0

a

)2

a(x− x0) = v0v − v2
0 +

1
2

(v2 − 2vv0 + v2
0)

= v2 − v2
0

or
v2 = v2

0 + 2a(x− x0)

Example Prove that x− x0 = 1
2(v0 + v)t

Solution Obviously a has been eliminated. From (1.5)

a =
v − v0

t

Substituting into (1.6) gives

x− x0 = v0t+
1
2

(
v − v0

t

)
t2

= v0t+
1
2

(vt− v0t)

=
1
2

(v0 + v)t

Exercise Prove that x− x0 = vt− 1
2at

2

? carefully study Sample Problem 2.8 ? [from Halliday]
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1.7 Another Look at Constant Acceleration

(This section is only for students who have studied integral calculus.)

The constant acceleration equations can be derived from integral calculus
as follows.

For constant acceleration a 6= a(x), a 6= a(t)

a =
dv

dt∫ t2

t1
a dt =

∫
dv

dt
dt

a

∫ t2

t1
dt =

∫ v2

v1

dv

a(t2 − t1) = v2 − v1

a(t− 0) = v − v0

v = v0 + at

v =
dx

dt∫
v dt =

∫
dx

dt
dt

v changes ... cannot take outside integral

actually v(t) = v0 + at∫ t2

t1
(v0 + at)dt =

∫ x2

x1

dx

[
v0t+

1
2
at2
]t2
t1

= x2 − x1

= v0(t2 − t1) +
1
2
a(t2 − t1)2 = x− x0

= v0(t− 0) +
1
2
a(t− 0)2

= v0t+
1
2
at2 ... x− x0 = v0t+ 1

2at
2

a =
dv

dt
=
dv

dx

dx

dt
= v

dv

dx
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∫ x2

x1

a dx =
∫
v
dv

dx
dx

a

∫ x2

x1

dx =
∫ v2

v1

v dv

a(x2 − x1) =
[

1
2
v2
]v2

v1

=
1
2

(
v2

2 − v2
1

)
a(x− x0) =

1
2

(
v2 − v2

0

)
v2 = v2

0 + 2a(x− x0)

One can now get the other equations using algebra.

1.8 Free-Fall Acceleration

If we neglect air resistance, then all falling objects have same acceleration

a = −g = −9.8 m/sec2

(g = 9.8 m/sec2).

LECTURE DEMONSTRATION:

1) Feather and penny in vacuum tube

2) Drop a cup filled with water which has a hole in the bottom. Water
leaks out if the cup is held stationary. Water does not leak out if the cup is
dropped.
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Carefully study Sample Problems 2-9, 2-10, 2-11. [from Halliday]

Example I drop a ball from a height H, with what speed does
it hit the ground ? Check that the units are correct.

Solution
v2 = v2

0 + 2a(x− x0)

v0 = 0
a = −g = −9.8 m/sec2

x0 = 0
x = H

v2 = 0− 2× g (0−−H)

v =
√

2gH

Check units:

The units of g are m sec−2 and H is in m. Thus
√

2gH has units
of
√
m sec−2 m =

√
m2 sec−2 = m sec−1. which is the correct

unit for speed.
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HISTORICAL NOTE

The constant acceleration equations were first discovered by Galileo
Galilei (1564 - 1642). Galileo is widely regarded as the “father of modern
science” because he was really the first person who went out and actually
did expreiments to arrive at facts about nature, rather than relying solely on
philosophical argument. Galileo wrote two famous books entitled Dialogues
concerning Two New Sciences [Macmillan, New York, 1933; QC 123.G13]
and Dialogue concerning the Two Chief World Systems [QB 41.G1356].

In Two New Sciences we find the following [Pg. 173]:

“THEOREM I, PROPOSITION I : The time in which any space
is traversed by a body starting from rest and uniformly accel-
erated is equal to the time in which that same space would be
traversed by the same body moving at a unifrom speed whose
value is the mean of the highest speed and the speed just before
acceleration began.”

In other words this is Galileo’s statement of our equation

x− x0 =
1
2

(v0 + v)t (1.7)

We also find [Pg. 174]:

“THEOREM II, PROPOSITION II : The spaces described by a
falling body from rest with a uniformly accelerated motion are
to each other as the squares of the time intervals employed in
traversing these distances.”

This is Galileo’s statement of

x− x0 = v0t+
1
2
at2 = vt− 1

2
at2 (1.8)

Galileo was able to test this equation with the simple device shown in
Figure 2.3. By the way, Galileo also invented the astronomical telescope !
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moveable fret wires

FIGURE 2.3 Galileo’s apparatus for verifying the constant acceleration
equations.

[from “From Quarks to the Cosmos” Leon M. Lederman and David N.
Schramm (Scientific American Library, New York, 1989) QB43.2.L43
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1.9 Problems

1. The following functions give the position as a function of time:

i) x = A

ii) x = Bt

iii) x = Ct2

iv) x = D cosωt

v) x = E sinωt

where A,B,C,D,E, ω are constants.

A) What are the units for A,B,C,D,E, ω?

B) Write down the velocity and acceleration equations as a function of
time. Indicate for what functions the acceleration is constant.

C) Sketch graphs of x, v, a as a function of time.

2. The figures below show position-time graphs. Sketch the correspond-
ing velocity-time and acceleration-time graphs.

t

x

t

x

t

x

3. If you drop an object from a height H above the ground, work out a
formula for the speed with which the object hits the ground.

4. A car is travelling at constant speed v1 and passes a second car moving
at speed v2. The instant it passes, the driver of the second car decides
to try to catch up to the first car, by stepping on the gas pedal and
moving at acceleration a. Derive a formula for how long it takes to
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catch up. (The first car travels at constant speed v1 and does not
accelerate.)

5. If you start your car from rest and accelerate to 30mph in 10 seconds,
what is your acceleration in mph per sec and in miles per hour2 ?

6. If you throw a ball up vertically at speed V , with what speed does it
return to the ground ? Prove your answer using the constant acceler-
ation equations, and neglect air resistance.
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2.1 Vectors and Scalars

When we considered 1-dimensional motion in the last chapter we only had
two directions to worry about, namely motion to the Right or motion to
the Left and we indicated direction with a + or − sign. We found that
the following quantities had a direction (i.e. could take a + or − sign):
displacement, velocity and acceleration. Quantities that don’t have a sign
were distance, speed and magnitude of acceleration.

Now in 2 and 3 dimensions we need more than a + or − sign. That’s
where vectors come in.

Vectors are quantities with both magnitude and direction.

Scalars are quantities with magnitude only.

Examples of Vectors are: displacement, velocity, acceleration,
force, momentum, electric field

Examples of Scalars are: distance, speed, magnitude of acceler-
ation, time, temperature

Before delving into vectors consider the following problem.

Example Joe and Mary are rowing a boat across a river which
is 40 m wide. They row in a direction perpendicular to the bank.
However the river is flowing downstream and by the time they
reach the other side, they end up 30 m downstream from their
starting point. Over what total distance did the boat travel?

Solution Obviously the way to do this is with the triangle in
Fig. 3.1, and we deduce that the distance is 50 m.

30 m

40 m
50 m

FIGURE 3.1 Graphical solution to river problem.
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2.2 Adding Vectors: Graphical Method

Another way to think about the previous problem is with vectors, which are
little arrows whose orientation specifies direction and whose length specifies
magnitude. The displacement along the river is represented as

FIGURE 3.2 Displacement along the river.

with a length of 30 m, denoted as ~A and the displacement across the river,
denoted B,

FIGURE 3.3 Displacement across the river.

with length of 40 m. To re-construct the previous triangle, the vectors are
added head-to-tail as in Fig. 3.4.

FIGURE 3.4 Vector addition solution to the river problem.
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The resultant vector, denoted ~C, is obtained by filling in the triangle. Math-
ematically we write ~C = ~A+ ~B.

The graphical method of solving our original problem is to take out a
ruler and actually measure the length of the resultant vector ~C. You would
find it to be 50 m.

Summary: When adding any two vectors ~A and ~B, we add them head-to-tail.

Students should read the textbook to obtain more details about
using the graphical method.

2.3 Vectors and Their Components

The graphical method requires the use of a ruler and protractor for measur-
ing the lengths of vectors and their angles. Thus there is always the problem
of inaccuracy in making these measurements. It’s better to use analytical
methods which rely on pure calculation. To learn this we must learn about
components. To do this we need trigonometry.

2.3.1 Review of Trigonometry

Lines are made by connecting two points. Triangles are made by connecting
three points. Of all the vast number of different possible triangles, the
subject of trigonometry has to do with only a certain, special type of triangle
and that is a right-angled triangle, i.e. a triangle where one of the angles is
90◦. Let’s draw one:

Hypotenuse

FIGURE 3.5 Right-angled triangle.
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The side opposite the right angle is always called the Hypotenuse. Consider
one of the other angles, say θ.

Hypotenuse

Adjacent

Opposite

θ

FIGURE 3.6 Right-angled triangle showing sides Opposite and Adjacent
to the angle θ.

The side adjacent to θ is called Adjacent and the side opposite θ is called
Opposite. Now consider the other angle α. The Opposite and Adjacent sides
are switched because the angle is different.

Hypotenuse

Opposite

Adjacent

α

FIGURE 3.7 Right-angled triangle showing sides Opposite and Adjacent
to the angle α.

Let’s label Hypotenuse asH, Opposite asO and Adjacent asA. Pythago-
ras’ theorem states

H2 = A2 +O2
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This is true no matter how the Opposite and Adjacent sides are labelled, i.e.
if Opposite and Adjacent are interchanged, it doesn’t matter for Pythagoras’
theorem.

Often we are interested in dividing one side by another. Some possible
combinations are O

H , A
H , OA . These special ratios are given special names. O

H
is called Sine. A

H is called Cosine. O
A is called Tangent. Remember them by

writing SOH, CAH, TOA.

Example Using the previous triangle for the river problem,
write down Sine θ, Cosine θ, Tangent θ Sine α, Cosine α, Tan-
gent α

Solution

Sine θ =
O

H
=

40m
50m

=
4
5

= 0.8

Cosine θ =
A

H
=

30m
50m

=
3
5

= 0.6

Tangent θ =
O

A
=

40m
30m

=
4
3

= 1.33

Sine α =
O

H
=

30m
50m

=
3
5

= 0.6

Cosine α =
A

H
=

40m
50m

=
4
5

= 0.8

Tangent α =
O

A
=

30m
40m

=
3
4

= 0.75

30 m

40 m
50 m

α

θ

FIGURE 3.8 Triangle for river problem.
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Now whenever the Sine of an angle is 0.8 the angle is always 53.1◦. Thus
θ = 53.1◦. Again whenever Tangent of an angle is 0.75 the angle is always
36.9◦. So if we have calculated any of the ratios, Sine, Cosine or Tangent
then we always know what the corresponding angle is.

2.3.2 Components of Vectors

An arbitrary vector has both x and y components. These are like shadows
on the x and y areas, as shown in Figure 3.9.

x

y

Ax

Ay A

FIGURE 3.9 Components, Ax and Ay, of vector ~A.

The components are denoted Ax and Ay and are obtained by dropping a
perpendicular line from the vector to the x and y axes. That’s why we
consider trigonometry and right-angled triangles!

A physical understanding of components can be obtained. Pull a cart
with a rope at some angle to the ground, as shown in Fig. 3.11. The cart will
move with a certain acceleration, determined not by the force ~F , but by the
component Fx in the x direction. If you change the angle, the acceleration
of the cart will change.
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LECTURE DEMONSTRATION of Fig. 3.10:

F

Fx

FIGURE 3.10 Pulling a cart with a force ~F .

Let’s re-draw Figure 3.10, writing ~A instead of ~F as follows:

A

Ax

Ayθ

α

FIGURE 3.11 Components and angles for Fig. 3.10.
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Let’s denote the magnitude or length of ~A simply as A. Thus Pythagoras’
theorem gives

A2 = A2
x +A2

y

and also
tan θ =

Ay
Ax

and
tanα =

Ax
Ay

(Also sin θ = Ay
A , cos θ = Ax

A , sinα = Ax
A , cosα = Ay

A )
Thus if we have the components, Ax and Ay we can always get the mag-

nitude and direction of the vector, namely A and θ (or α). Similarly if we
start with A and θ (or α) we can always find Ax and Ay.

do Sample Problem 3-3 in Lecture

2.4 Unit Vectors

A vector is completely specified by writing down magnitude and direction
(i.e. A and θ) x and y components (Ax and Ay).

There’s another very useful and compact way to write vectors and that is
by using unit vectors. The unit vector î is defined to always have a length of
1 and to always lie in the positive x direction, as in Fig. 3.12. (The symbol
∧ is used to denote these unit vectors.)

x

y

i

FIGURE 3.12 Unit vector î.
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Similarly the unit vector ĵ is defined to always have a length of 1 also but
to lie entirely in the positive y direction.

x

y

j

FIGURE 3.13 Unit vector ĵ.

The unit vector k̂ lies in the psoitive z direction.

x

y

k

z

FIGURE 3.14 Unit vector k̂.

Thus any arbitrary vector ~A is now written as

~A = Axî+Ay ĵ +Azk̂

(Think about this and make sure you understand.)
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2.5 Adding Vectors by Components

Finally we will now see the use of components and unit vectors. Remember
how we discussed adding vectors graphically using a ruler and protractor. A
better method is with the use of components, because then we can get our
answers by pure calculation.

In Fig. 3.16 we have shown two vectors ~A and ~B added to form ~C, but
we have also indicated all the components.

Ax

Cx

Ay

Bx

By
Cy

BC

A

x

y

FIGURE 3.15 Adding vectors by components.

By carefully looking at the figure you can see that

Cx = Ax +Bx

Cy = Ay +By

This is a very important result.



42 CHAPTER 2. VECTORS

Now let’s back-track for a minute. When we write

~C = ~A+ ~B

you should say, “Wait a minute! What does the + sign mean?” We are used
to adding numbers such as 5 = 3 + 2, but in the above equation ~A, ~B and
~C are not numbers. They are these strange arrow-like objects called vectors
which are “add” by putting head-to-tail. We should really write

~C = ~A⊕ ~B

where⊕ is a new type of “addition”, totally unlike adding numbers. However
Ax, Bx, Ay, By, Cx, Cy are ordinary numbers and the + sign we used
above does denote ordinary addition. Thus ~C = ~A ⊕ ~B actually means
Cx = Ax + Bx and Cy = Ay + By. The statement ~C = ~A ⊕ ~B is really
shorthand for two ordinary addition statements. Whenever anyone writes
something like ~D = ~F+ ~E it actually means two things, namelyDx = Fx+Ex
and Dy = Fy + Ey.

All of this is much more obvious with the use of unit vectors. Write
~A = Axî+Ay ĵ and ~B = Bxî+By ĵ and ~C = Cxî+ Cy ĵ. Now

~C = ~A+ ~B

is simply

Cxî+ Cy ĵ = Axî+Ay ĵ +Bxî+By ĵ

= (Ax +Bx)̂i+ (Ay +By)ĵ

and equating coefficients of î and ĵ gives

Cx = Ax +Bx

and
Cy = Ay +By
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Example Do the original river problem using components.

Solution

~A = 30̂i ~B = 40ĵ
~C = ~A+ ~B

Cxî + Cy ĵ = Axî+Ay ĵ +Bxî+By ĵ

Ay = 0 Bx = 0
Cxî + Cy ĵ = 30̂i+ 40ĵ

Cx = 30 Cy = 40
or Cx = Ax +Bx = 30 + 0 = 30

Cy = Ay +By = 0 + 40 = 40
C2 = C2

x + C2
y = 302 + 402 = 900 + 1600 = 2500

... C = 50

carefully study Sample Problems 3-4, 3-5

2.6 Vectors and the Laws of Physics

2.7 Multiplying Vectors

2.7.1 The Scalar Product (often called dot product)

We know how to add vectors. Now let’s learn how to multiply them.
When we add vectors we always get a new vector, namely ~c = ~a+~b. When

we multiply vectors we get either a scalar or vector. There are two types of
vector multiplication called scalar products or vector product. (Sometimes
also called dot product or cross product).

The scalar product is defined as

~a ·~b ≡ ab cosφ (2.1)

where a and b are the magnitude of ~a and ~b respectively and φ is the angle
between ~a and ~b. The whole quantity ~a ·~b = ab cosφ is a scalar, i.e. it has
magnitude only. As shown in Fig. 3-19 of Halliday the scalar product is the
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product of the magnitude of one vector times the component of the other
vector along the first vector.

Based on our definition (2.1) we can work out the scalar products of all
of the unit vectors.

Example Evaluate î · î

Solution î · î = ii cosφ

but i is the magnitude of î which is 1, and the angle φ is 0◦.
Thus

î · i = 1

Example Evaluate î · ĵ

Solution î · ĵ = ij cos 90◦ = 0

Thus we have î · î = ĵ · ĵ = k̂ · k̂ = 1 and î · ĵ = î · k̂ = ĵ · k̂ = ĵ · î = k̂ · î =
k̂ · ĵ = 0. (see Problem 38)

Now any vector can be written in terms of unit vectors as ~a = axî+ay ĵ+
azk̂ and ~b = bxî + by ĵ + bzk̂. Thus the scalar product of any two arbitrary
vectors is

~a ·~b = ab cosφ
= (axî+ ay ĵ + azk̂) · (bxî+ by ĵ + bzk̂)
= axbx + ayby + azbz

Thus we have a new formula for scalar product, namely

~a ·~b = axbx + ayby + azbz (2.2)

(see Problem 46) which has been derived from the original definition (2.1)
using unit vectors.

What’s the good of all this? Well for one thing it’s now easy to figure
out the angle between vectors, as the next example shows.

do Sample Problem 3-6 in Lecture
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2.7.2 The Vector Product

In making up the definition of vector product we have to define its magnitude
and direction. The symbol for vector product is ~a×~b. Given that the result
is a vector let’s write ~c ≡ ~a×~b. The magnitude is defined as

c = ab sinφ

and the direction is defined to follow the right hand rule. (~c = thumb, ~a =
forefinger, ~b = middle finger.)

(Do a few examples finding direction of cross product)

Example Evaluate î× ĵ

Solution |̂i× ĵ| = ij sin 90◦ = 1
direction same as k̂
Thus î× ĵ = k̂

Example Evaluate k̂ × k̂

Solution |k̂ × k̂| = kk sin 0 = 0
Thus k̂ × k̂ = 0

Thus we have

î× ĵ = k̂ ĵ × k̂ = î k̂ × î = ĵ

ĵ × î = −k̂ k̂ × ĵ = −î î× k̂ = −ĵ

and
î× î = ĵ × ĵ = k̂ × k̂ = 0

(see Problem 39) Thus the vector product of any two arbitrary vectors is

~a×~b = (axî+ ay ĵ + azk̂)× (bxî+ by ĵ + bzk̂)

which gives a new formula for vector product, namely

~a×~b = (aybz − azby )̂i+ (azbx − axbz)ĵ
+(axby − aybx)k̂

(see Problem 49). Study Sample Problem 3-7 and 3-8.
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2.8 Problems

1. Calculate the angle between the vectors ~r = î+ 2ĵ and ~t = ĵ − k̂.

2. Evaluate (~r + 2~t ). ~f where ~r = î+ 2ĵ and ~t = ĵ − k̂ and ~f = î− ĵ.

3. Two vectors are defined as ~u = ĵ + k̂ and ~v = î+ ĵ. Evaluate:

A) ~u+ ~v

B) ~u− ~v
C) ~u.~v

D) ~u× ~v



Chapter 3

MOTION IN 2 & 3
DIMENSIONS

SUGGESTED HOME EXPERIMENT:
Design a simple experiment which shows that the range of a projectile

depends upon the angle at which it is launched. Have your experiment show
that the maximum range is achieved when the launch angle is 45o.

THEMES:
1. FOOTBALL.

47
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3.1 Moving in Two or Three Dimensions

In this chapter we will go over everything we did in Chapter 2 concerning
motion, except that now the entire discussion will use the formation of
vectors.

3.2 Position and Displacement

In Chapter 2 we used the coordinate x alone to denote position. However
for 3-dimensions position is generally described with the position vector

~r = xî+ yĵ + zk̂.

Now in Chapter 2, displacement was defined as a change in position, namely
displacement = ∆x = x2 − x1. In 3-dimensions, displacement is defined as
the change in position vector,

displacement = ∆~r = ~r2 − ~r1

= ∆xî+ ∆yĵ + ∆zk̂
= (x2 − x1)̂i+ (y2 − y1)ĵ + (z2 − z1)k̂

Thus displacement is a vector.

Sample Problem 4-1

3.3 Velocity and Average Velocity

In 1-dimension, the average velocity was defined as displacement divided by
time interval or v̄ ≡ ∆x

∆t = x2−x1
t2−t1 . Similarly, in 3-dimensions average velocity

is defined as

~̄v ≡ ∆~r
∆t

=
~r2 − ~r1

t2 − t1

=
∆xî+ ∆yĵ + ∆zk̂

∆t

=
∆x
∆t

î+
∆y
∆t

ĵ +
∆z
∆t

k̂

= v̄xî+ v̄y ĵ + v̄zk̂
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For 1-dimension, the instantaneous velocity, or just velocity, was defined as
v ≡ dx

dt . In 3-dimensions we define velocity as

~v ≡ d~r

dt

=
d

dt
(xî+ yĵ + zk̂)

=
dx

dt
î+

dy

dt
ĵ +

dz

dt
k̂

= vxî+ vy ĵ + vzk̂

Thus velocity is a vector.

Point to note: The instantaneous velocity of a particle is always tangent
to the path of the particle. (carefully read about this in Halliday, pg. 55)

3.4 Acceleration and Average Acceleration

Again we follow the definitions made for 1-dimension. In 3-dimensions, the
average acceleration is defined as

~̄a ≡ ∆~v
∆t

=
~v2 − ~v1

t2 − t1

and acceleration (instantaneous acceleration) is defined as

~a =
d~v

dt

Constant Acceleration Equations

In 1-dimension, our basic definitions were

v̄ =
∆x
∆t

v =
dx

dt

ā =
∆v
∆t

a =
dv

dt



50 CHAPTER 3. MOTION IN 2 & 3 DIMENSIONS

We found that if the acceleration is constant, then from these equations we
can prove that

v = vo + at

v2 = v2
o + 2a(x− xo)

x− xo =
vo + v

2
t

x− xo = vot+
1
2
at2

= vt− 1
2
at2

which are known as the 5 constant acceleration equations.
In 3-dimensions we had

~̄v ≡ ∆~r
∆t

or
v̄xî+ v̄y ĵ + v̄zk̂ =

∆x
∆t

î+
∆y
∆t

ĵ +
∆z
∆t

k̂

or
v̄x =

∆x
∆t

, v̄y +
∆y
∆t

, v̄z =
∆z
∆t

These 3 equations are the meaning of the first vector equation ~̄v ≡ ∆~r
∆t .

Similarly

~v ≡ d~r

dt
or

vx =
dx

dt
, vy =

dy

dt
, vz =

dz

dt

Similarly

~̄a ≡ ∆~v
∆t

or
āx =

∆x
∆t

, āy =
∆y
∆t

, āz =
∆z
∆t

and
~a ≡ d~v

dt
or

ax =
dvx
dt
, ay =

dvy
dt
, az =

dvz
dt

So we see that in 3-dimensions the equations are the same as in 1-
dimension except that we have 3 sets of them; one for each dimension. Thus
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if the 3-dimensional acceleration vector ~a is now constant, then ax, ay and
az must all be constant. Thus we will have 3 sets of constant acceleration
equations, namely

vx = vox + axt

v2
x = v2

ox + 2ax(x− xo)
x− xo =

vox + vx
2

t

x− xo = voxt+
1
2
axt

2

= vxt−
1
2
axt

2

and

vy = voy + ayt

v2
y = v2

oy + 2ay(y − yo)

y − yo =
voy + vy

2
t

y − yo = voyt+
1
2
ayt

2

= vyt−
1
2
ayt

2

and

vz = voz + azt

v2
z = v2

oz + 2az(z − zo)
z − zo =

voz + vz
2

t

z − zo = vozt+
1
2
azt

2

= vzt−
1
2
azt

2

These 3 sets of constant acceleration equations are easy to remember. They
are the same as the old ones in 1-dimension except now they have subscripts
for x, y, z.

3.5 Projectile Motion

Read.
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3.6 Projectile Motion Analyzed

Most motion in 3-dimensions actually only occurs in 2-dimensions. The
classic example is kicking a football off the ground. It follows a 2-dimensional
curve, as shown in Fig. 4.1. Thus we can ignore all motion in the z direction
and just analyze the x and y directions. Also we shall ignore air resistance.

v0

v0 x

v0 y

range, R

θ

FIGURE 4.1 Projectile Motion.
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Example A football is kicked off the ground with an initial ve-
locity of ~vo at an angle θ to the ground. Write down the x
constant acceleration equation in simplified form. (Ignore air re-
sistance)

Solution The x direction is easiest to deal with, because there is
no acceleration in the x direction after the ball has been kicked,
i.e. ax = 0. Thus the constant acceleration equations in the x
direction become

vx = vox

v2
x = v2

ox

x− xo =
vox + vx

2
t = voxt = vxt

x− xo = voxt

= vxt (3.1)

The first equation (vx = vox) makes perfect sense because if
ax = 0 then the speed in the x direction is constant, which
means vx = vox. The second equation just says the same thing.
If vx = vox then of course also v2

x = v2
ox. In the third equation

we also use vx = vox to get vox+vx
2 = vox+vox

2 = vox or vox+vx
2 =

vx+vx
2 = vx. The fourth and fifth equations are also consistent

with vx = vox, and simply say that distance = speed × time
when the acceleration is 0.

Now, what is vox in terms of vo ≡ |~vo| and θ? Well, from Fig. 4.1
we see that vox = vo cos θ and voy = vo sin θ. Thus (3.1) becomes

x− xo = vo cos θ t
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Example What is the form of the y-direction constant acceler-
ation equations from the previous example ?

Solution Can we also simplify the constant acceleration equa-
tions for the y direction? No. In the y direction the acceleration
is constant ay = −g but not zero. Thus the y direction equations
don’t simplify at all, except that we know that the value of ay is
−g or −9.8 m/sec2.

Also we can write voy = vo sin θ. Thus the equations for the y
direction are

vy = vo sin θ − gt
v2
y = (vo sin θ)2 − 2g(y − yo)

y − yo =
vo sin θ + vy

2
t

y − yo = vo sin θ t− 1
2
gt2

An important thing to notice is that t never gets an x, y or z subscript.
This is because t is the same for all 3 components, i.e. t = tx = ty = tz.
(You should do some thinking about this.)

LECTURE DEMONSTRATIONS

1) Drop an object: it accerates in y direction.
Air track: no acceleration in x direction.

2) Push 2 objects off table at same time. One falls in vertical path and
the other on parabolic trajectory but both hit ground at same time.

3) Monkey shoot.
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Example The total horizontal distance (called the Range) that a
football will travel when kicked, depends upon the initial speed
and angle that it leaves the ground. Derive a formula for the
Range, and show that the maximum Range occurs for θ = 45◦.
(Ignore air resistance and the spin of the football.)

Solution The Range, R is just

R = x− xo = voxt

= vo cos θ t

Given vo and θ we could calculate the range if we had t. We
get this the y direction equation. From the previous example we
had

y − yo = vo sin θ t− 1
2
gt2

But for this example, we have y − yo = 0. Thus

0 = vo sin θ t− 1
2
gt2

0 = vo sin θ − 1
2
gt

⇒ t =
2vo sin θ

g

Substituting into our Range formula above gives

R = vo cos θ t

=
2v2
o sin θ cos θ

g

=
v2
o sin 2θ
g

using the formula sin 2θ = 2 sin θ cos θ. Now R will be largest
when sin 2θ is largest which occurs when 2θ = 90o. Thus θ = 45o.
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COMPUTER SIMULATION (Interactive Physics): Air Drop.

H=200 m

R=400 m

origin

FIGURE 4.2 Air Drop.

Example A rescue plane wants to drop supplies to isolated
mountain climbers on a rocky ridge a distance H below. The
plane is travelling horizontally at a speed of vox. The plane
releases supplies a horizontal distance of R in advance of the
mountain climbers. Derive a formula in terms of H, v0x,R and
g, for the vertical velocity (up or down) that the supplies should
be given so they land exactly at the climber’s position. If H =
200 m, v0x = 250 km/hr and R = 400m, calculate a numerical
value for this speed.(See Figure 4.2.)
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Solution Let’s put the origin at the plane. See Fig. 4.2. The
initial speed of supplies when released is vox = +250 km/hour

x− xo = R− 0 = R

ay = −g
y − yo = 0−H = −H (note the minus sign !)

We want to find the initial vertical velocity of the supplies,
namely voy. We can get this from

y − yo = voyt+
1
2
ayt

2 = −H

= voyt−
1
2
gt2

or
voy =

−H
t

+
1
2
gt

and we get t from the x direction, namely

x− xo = voxt = R

⇒ t =
R

vox
giving

voy =
−H vox
R

+
1
2
g
R

vox

which is the formula we seek. Let’s now put in numbers:

= −200 m× 250 km hour−1

400 m

+
1
2

9.8
m

sec2
× 400 km

250 km hour−1

= −125
km

hour
+ 7.84

m2hour
sec2km

= −125
1000 m

60× 60 sec
+ 7.85

m2 × 60× 60 sec
sec21000 m

= −34.722 m/sec + 28.22 m/sec
= −6.5 m/sec

Thus the supplies must be thrown in the down direction (not up)
at 6.5 m/sec.
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3.7 Uniform Circular Motion

In today’s world of satellites and spacecraft circular motion is very important
to understand because many satellites have circular orbits. Also circular
motion is a classic example where we have a definite non-zero acceleration
even though the speed of a satellite is constant. This occurs because the
direction of velocity is constantly changing for the satellite even though the
magnitude of velocity (i.e. speed) is constant. This is shown in Fig. 4-19 of
Halliday. The word “uniform” means that speed is constant.

In circular motion, there is a well defined radius which we will call r.
Also the time it takes for the satellite to complete 1 orbit is called the period
T . If the speed is constant then it is given by

v =
∆s
∆t

=
2πr
T

(3.2)

Here I have written ∆s
∆t instead of ∆x

∆t or ∆y
∆t because ∆s is the total distance

around the circle which is a mixture of x and y. 2πr
T is just the distance of

1 orbit (circumference) divided by the time of 1 orbit (period).
What about the acceleration? Well that’s just a = ∆v

∆t but how do we
work it out? Look at Figure 4.3, where the displacement and velocity vectors
are drawn for a satellite at two different positions P1 and P2.

= r2 - r1
∆ v = v2 - v1 

∆ r

r2 

 r1

 v2  

 v1  
 v1  

 v2  
∆θ

∆θ

∆s

P1

P1

FIGURE 4.3 Circular Motion.
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Now angle ∆θ is defined as (with |~r1| = |~r2| ≡ r)

∆θ ≡ ∆s
r

=
v∆t
r

(3.3)

The velocity vectors can be re-drawn as in the bottom part of the figure.
The triangle is similar to the top triangle in that the angle ∆θ is the same.
Also the speed v is constant, meaning that

|~v2| = |~v1| ≡ v. (3.4)

Writing ∆v ≡ |∆~v| the bottom figure also gives

∆θ =
∆v
v

(3.5)

Now the magnitude of acceleration is

a =
∆v
∆t

(3.6)

Combining the above two equations for ∆θ gives ∆v
∆t = v2

r , i.e.

a ≡ ∆v
∆t

=
v2

r
(3.7)

This is a very important equation. Whenever we have uniform circular
motion we always know the actual value of acceleration if we know v and
r. We have worked out the magnitude of the acceleration. What about its
direction? I will show you a VIDEO in class (Mechanical Universe video
#9 showing vectors for circular motion) which will clearly show that the
direction of acceleration is always towards the center of the circle. For this
reason it is called centripetal acceleration.

One final thing. When you drive your car around in a circle then you, as
the driver, feel as though you are getting pushed against the door. In reality
it is the car that is being accelerated around in the circle, and because of
your inertia, the car pushes on you. This “acceleration” that you feel is
the same as the car’s acceleration. The “acceleration” you feel is called the
centrifugal acceleration. The same idea occurs when you spin-dry clothes in
a washing machine.
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Example Future spacecraft will be made to spin in order to pro-
vide artificial gravity for the astronauts. Suppose the spacecraft
is a cylinder of L in length. Derive a formula for the rotation
period would it need to spin in order to simulate the gravity on
Earth. If L = 1 km what is the numerical value foe the period ?

Solution The centifugal acceleration is a and we want it to equal
g. Thus

g =
v2

r
=

(2πr/T )2

r
=

4π2r

T 2

Thus

T 2 =
4π2r

g

giving

T = 2π

√
L

g

which is the formula we seek. Putting in numbers:

T = 2π
√

1000 m
9.8 m sec−2

= 2π
√

102.04 sec−2

= 2π × 10.1 sec
= 63.5 sec

i.e. about once every minute!

Example The Moon is 1/4 million miles from Earth. How fast
does the Moon travel in its orbit ?

Solution The period of the Moon is 1 month. Thus

v =
2πr
T

=
2π × 250, 000 miles

30× 24 hours
= 2, 182 mph

i.e. about 2000 mph!
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3.8 Problems

1. A) A projectile is fired with an initial speed vo at an angle θ with
respect to the horizontal. Neglect air resistance and derive a formula
for the horizontal range R, of the projectile. (Your formula should
make no explicit reference to time, t). At what angle is the range a
maximum ?

B) If v0 = 30 km/hour and θ = 15o calculate the numerical value of
R.

2. A projectile is fired with an initial speed vo at an angle θ with respect
to the horizontal. Neglect air resistance and derive a formula for the
maximum height H, that the projectile reaches. (Your formula should
make no explicit reference to time, t).

3. A) If a bulls-eye target is at a horizontal distance R away, derive an
expression for the height L, which is the vertical distance above the
bulls-eye that one needs to aim a rifle in order to hit the bulls-eye.
Assume the bullet leaves the rifle with speed v0.

B) How much bigger is L compared to the projectile height H ?
Note: In this problem use previous results found for the range R and

height H, namely R =
v2

0 sin 2θ
g = 2v2

0 sin θ cos θ
g and H =

v2
0 sin2 θ

2g .

4. Normally if you wish to hit a bulls-eye some distance away you need to
aim a certain distance above it, in order to account for the downward
motion of the projectile. If a bulls-eye target is at a horizontal distance
D away and if you instead aim an arrow directly at the bulls-eye (i.e.
directly horiziontally), by what (downward) vertical distance would
you miss the bulls-eye ?

5. Prove that the trajectory of a projectile is a parabola (neglect air
resistance). Hint: the general form of a parabola is given by y =
ax2 + bx+ c.

6. Even though the Earth is spinning and we all experience a centrifugal
acceleration, we are not flung off the Earth due to the gravitational
force. In order for us to be flung off, the Earth would have to be
spinning a lot faster.

A) Derive a formula for the new rotational time of the Earth, such
that a person on the equator would be flung off into space. (Take the
radius of Earth to be R).
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B) Using R = 6.4 million km, calculate a numerical anser to part A)
and compare it to the actual rotation time of the Earth today.

7. A staellite is in a circular orbit around a planet of mass M and radius
R at an altitude of H. Derive a formula for the additional speed that
the satellite must acquire to completely escape from the planet. Check
that your answer has the correct units.

8. A mass m is attached to the end of a spring with spring constant k on
a frictionless horizontal surface. The mass moves in circular motion
of radius R and period T . Due to the centrifugal force, the spring
stretches by a certain amount x from its equilibrium position. Derive
a formula for x in terms of k, R and T . Check that x has the correct
units.

9. A cannon ball is fired horizontally at a speed v0 from the edge of the
top of a cliff of height H. Derive a formula for the horizontal distance
(i.e. the range) that the cannon ball travels. Check that your answer
has the correct units.

10. A skier starts from rest at the top of a frictionless ski slope of height
H and inclined at an angle θ to the horizontal. At the bottom of
the slope the surface changes to horizontal and has a coefficient of
kinetic friction µk between the horizontal surface and the skis. Derive
a formula for the distance d that the skier travels on the horizontal
surface before coming to a stop. (Assume that there is a constant
deceleration on the horizontal surface). Check that your answer has
the correct units.

11. A stone is thrown from the top of a building upward at an angle θ to
the horizontal and with an initial speed of v0 as shown in the figure. If
the height of the building is H, derive a formula for the time it takes
the stone to hit the ground below.
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θ

vo

H
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Chapter 4

FORCE & MOTION - I

THEMES:
1. HOW STRONG A ROPE DO I NEED ?

65
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4.1 What Causes an Acceleration?

So far we have studied some things about acceleration but we never consid-
ered what causes things to accelerate. The answer is force. The gravitational
force causes objects to fall (i.e. accelerate downwards). Friction force causes
cars to slow down (decelerate), etc.

Fundamental classical physics is all about finding the force. Once you
know that you can get acceleration as we shall see. Once you have the
acceleration, you can find velocity, displacement and time as we have studied
previously.

4.2 Newton’s First Law

A body remains in a state of rest, or uniform motion in a straight line,
unless acted upon by a force.

LECTURE DEMONSTRATION: Tablecloth

4.3 Force

Read

4.4 Mass

Read

4.5 Newton’s Second Law

Newton’s second law of motion is not something we can derive from other
equations. Rather it is a fundamental postulate of physics. It was introduced
by Isaac Newton to describe the cause of acceleration. The law is

Σ~F = m~a

Σ~F represents the sum (Σ) of all forces (~F ) acting on a single body of mass
m. The body then undergoes an acceleration given by ~a. One of the key
activities in classical physics is to find all the forces Σ~F . Once you have
them then you have the acceleration via ~a = Σ~F

m and once you have that
you can get velocity, displacement and time.
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Now Newton’s second law is a vector equation. Thus its actual meaning
is given by 3 equations, namely

ΣFx = max ΣFy = may ΣFz = maz

Once we have ΣFx, ΣFy, ΣFz we just divide by m to give the accelerations
ax, ay, az. If they are constant, just plug them into the constant acceleration
equations and solve for the other quantities you are interested in.

One extra point is the units. The units of a are m/sec2. The units of m
are kg and thus the units of F are kg m/sec2. This is given a special name
called Newton (N). Thus

N ≡ kg m/sec2

In the English system of units a Pound (lb) is a unit of force. The mass unit
is called slug. The units of acceleration are foot/sec2. thus

Pound (lb) ≡ slug foot/sec2

4.6 Some Particular Forces

Weight
If you stand on a set of scales you measure your weight. If you stand

on the same scales on the moon your weight will be less because the moon’s
gravity is small, even though your mass is the same.

Weight is defined as
W ≡ mg

where g is the acceleration due to gravity. (It’s 9.8 m/sec2 on Earth, but
only 1.7 m/sec2 on the Moon.) Weight is a force which pulls you down.

Normal Force
You are sitting still in your chair. The sum of all forces in the x and z

direction are zero (ΣFx = 0, ΣFz = 0) which means that ax = az = 0. Now
you also know that ay = 0. (You are not moving.) Yet there is a weight
force W pulling down.

If your ay = 0 then there must be another force pushing up to balance
the weight force. We call this up force the Normal force N . Thus

ΣFy = may

N −W = 0



68 CHAPTER 4. FORCE & MOTION - I

The N has a + sign (up) and W has a − sign (down) and they both balance
out to give zero acceleration. That’s how we know that the chair must push
up on the person sitting on it. The heavier the person, the bigger N must
be.

The Normal force is called “Normal” because it always acts perpendicu-
lar (normal means perpendicular) to the surface (of the chair).

Friction
Friction is another force that we will study shortly.

Tension
Finally another important type of force is tension, which is the force in

a rope or cable when under a stress.

Carefully study Sample Problem 5-4

4.7 Newton’s Third Law

Every action has an equal and opposite reaction.

LECTURE DEMONSTRATION: Fire extinguisher rocket
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4.8 Applying Newton’s Laws

? Carefully study Sample Problems 5-5, 5-6, 5-7, 5-8, 5-9, 5-10, 5-11.?

Example A chandelier of mass m is hanging from a single cord
in the ceiling. Derive a formula for the tension in the cord. If
m = 50 kg evaluate a numerical answer for the tension.

Solution Carefully draw a diagram showing all forces, as seen
in Fig. 5.1. Then solve ~ΣF = m~a. Thus

ΣFx = max ΣFy = may ΣFz = maz

but all forces and acceleration in the x and z directions are zero
and so the only interesting equation is

ΣFy = may.

Now the forces are tension (+T ) in the up direction and weight
(−W ) in the down direction. You don’t want the chandelier to
move, so ay = 0. Thus

T −W = 0

⇒ T = W

= mg

which is the formula we seek. Putting in numbers:

T = 50 kg × 9.8 m/sec2 = 490 kg m/sec2 = 490 N

T

W

FIGURE 5.1 Chandelier hanging from ceiling.
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Example A chandelier of massm is now suspended by two cords,
one at an angle of α to the ceiling and the other at θ. Derive a
formula for is the tension in each cord. If m = 50kg and α = 60o

and θ = 30o evaluate a numerical answer for each tension.

Solution Again carefully draw a figure showing all forces. See
Fig. 5.2.

T1 T2

W

θα

FIGURE 5.2 Chandelier suspended by 2 cables.

In the z direction all forces and acceleration are zero. We need
to consider the x and y directions (both with ax = ay = 0),
namely,

ΣFx = max and ΣFy = may

T2x − T1x = 0 and T2y + T1y −W = 0

Now
T2x = T2 cos θ, T1x = T1 cosα

T2y = T2 sin θ, T1y = T1 sinα
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giving

T2 cos θ − T1 cosα = 0 and T2 sin θ + T1 sinα = W

The x equation gives T2 = T1 cosα
cos θ which is substituted into the

y equation giving

T1 cosα
cos θ

sin θ + T1 sinα = W

or

T1 =
W

cosα tan θ + sinα

=
mg

cosα tan θ + sinα

and upon substitution

T2 =
T1 cosα

cos θ
=

mg

sin θ + tanα cos θ

which are the formulas we seek. Putting in numbers gives:

W = mg
= 50 kg × 9.8 m/sec2 = 490 N

Thus
T1 =

490N
cos 60 tan 30 + sin 60

= 426N.

Now put back into

T2 =
T1 cos 60

cos 30
=

426N cos 60
cos 30

= 246 N
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Example If you normally have a weight of W , how much will a
weight scale read if you are standing on it in an elevator moving
up at an acceleration of a ?

Solution The reading on the scale will just be the Normal force.
Thus

ΣF = ma

N − W = ma

N = W +ma

The answer makes sense. You would expect the scale to read a
higher value.
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Example A block of mass m slides down a frictionless incline of
angle θ.

A) What is the normal force?
B) What is the acceleration of the block?

Solution In Fig. 5.3 the forces are drawn. Notice that I have
chosen the orientation of the y axis to lie along the normal force.
You could make other choices, but this will make things easier
to work out.

N

W

W
 co

sθ

W sinθ

θ

θ 90 − θ

y

x

FIGURE 5.3 Block sliding down frictionless incline.
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A) Analyzing the y direction,

ΣFy = may

N −W cos θ = 0

because the block has zero acceleration in the y direction.
Thus

N = W cos θ = mg cos θ

B) Analyzing the x direction,

ΣFx = max

W sin θ = max

ax =
W sin θ
m

=
mg sin θ
m

= g sin θ
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Example Derive a formula for the acceleration of the block sys-
tem shown in Fig. 5.4 (Atwood machine). Assume the pulley is
frictionless and the tension T is the same throughout the rope.

T

Tm1

m2W1

W2

FIGURE 5.4 Atwood machine.

Solution The tension is the same throughout the rope; thus
T1 = T2 = T . Analyze forces in y direction on m1;

ΣFy = m1a1

T −W1 = m1a (4.1)

with a1 ≡ a. Analyze forces in y direction on m2;

ΣFy = m2a2

T −W2 = m2a2

but if a1 = a then a2 = −a giving

T −W2 = −m2a (4.2)

Subtracting eqn. (4.2) from eqn. (4.1) gives

T − W1 − (T −W2) = m1a− (−m2a)
− W1 +W2 = m1a+m2a

a =
W2 −W1

m1 +m2
=
m2 −m1

m1 +m2
g

Thus a is positive if m2 > m1 and negative if m2 < m1.
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HISTORICAL NOTE

Isaac Newton is widely regarded as the greatest physicist of all time.
One of his major works was Philosophiae Naturalis Principia Mathematica
(Mathematical Principles of Natural Philosophy.) [University of California
Press, Berkeley, California, ed. by F. Cajori; 1934; QA 803 .A45 1934]. Very
early on in the book we find the section entitled Axioms, or Laws of Motion.
The laws are stated as follows:

“LAW I: Every body continues in a state of rest, or of uniform
motion in a right line, unless it is compelled to change that state
by forces impressed upon it.

LAW II: The change of motion is proportional to the motive force
impressed; and is made in the direction of the right line in which
that force is impressed.

LAW III: To every action there is always opposed an equal re-
action; or, the mutual actions of two bodies upon each other are
always equal, and directed to contrary parts.”

After the axioms are stated, the Principia is then divided into two major
books, namely Book I: The Motion of Bodies and Book II: The Motion of
Bodies (in resisting mediums). In these books we find discussion of such
toipics as centripetal forces, conic sections, orbits, rectilinear motion, oscil-
lating pendulum, attractive force of spherical bodies, motion of bodies in
fluids, fluid dynamics, hydrostatics, etc. This makes for wonderful reading
and is highly recommended.

By the way Newton also invented calculus and the reflecting telescope !
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4.9 Problems
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Chapter 5

FORCE & MOTION - II

SUGGESTED HOME EXPERIMENT:
Measure the coefficient of static friction between 2 surfaces.

THEMES:
FRICTION.

79
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5.1 Friction

There are two types of friction — static and kinetic. When two surfaces are
in relative motion then the friction is kinetic, such as when you slam the
brakes on in your car and the car skids along the road. Eventually, kinetic
friction will cause the car to stop.

If you put a coin on top of a book and tilt the book at a small angle, the
coin will remain stationary. Static friction prevents the coin from sliding.
Tilt the book a bit more and still the coin does not slide. The static friction
has increased to keep the coin in place. Eventually however, static friction
will be overcome and the coin will slide down the book (with kinetic friction
operating). Notice that the maximum amount of static friction occurred
just before the coin started to slide.

(LECTURE DEMONSTRATION of above.)

5.2 Properties of Friction

If you press down hard on the coin, then the friction force will increase.
When you press down you are causing the normal force N to get bigger.
Thus friction is proportional to N . The proportionality constant is called
the coefficient of friction µ.

The kinetic friction force fk is given by

fk ≡ µkN

where µk is the coefficient of kinetic friction. We saw that static friction
varies. However the maximum value of the static friction force fs,max is

fs,max ≡ µsN

Both of these equations can be regarded as definitions for µk and µs.
(Carefully study Samples Problems 6-1, 6-2, 6-3, 6-4).
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Example The coefficient of static friction is just the tangent of
the angle where two objects start to slide relative to each other.
Show that µs = tan θ.

Solution A force diagram is shown in Fig. 6.1.

N

W

W
 co

sθ

W sinθ

θ

θ 90 − θ

y

x

fs

FIGURE 6.1 Block sliding down incline with friction.
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Analyze forces in y direction

ΣFy = may

N −W cos θ = 0

In x direction
ΣFx = max

fs −W sin θ = 0

µsN −W sin θ = 0

µs =
W sin θ
N

where ax = 0 just before object starts to slide. Now we get N
from y equation above (N = cos θ). Thus

µs =
W sin θ
W cos θ

or
µs = tan θ

5.3 Drag Force and Terminal Speed

Read

5.4 Uniform Circular Motion

In the case of circular motion we always know that the acceleration is a = v2

r .
Thus we always know the right hand side of Newton’s second law, namely

ΣF = ma

=
mv2

r

The forces that produce circular motion get put into the left hand side.
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Example In designing a curved road, engineers consider the
speed v of a car and the coefficient of friction between the car
tires and the road. The radius of curvature of the road bend is
chosen to be large enough so that the car will be able to derive
around smoothly in a part-circle. Work out a formula for the
radius of curvature in terms of the speed of the car and the co-
efficient of friction.

Solution Force diagrams are shown in Fig. 6.2. The top part of
the figure shows that static friction alone keeps the car in circular
motion. (The forward motion of the car involves moving kinetic
friction, but the sideways motion involves static friction.)

N

fs x

x

y

side view

view from above

FIGURE 6.2 Car rounding a curve.
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In the x direction

ΣFx = max

fs = m
v2

r

µsN =
mv2

r

We get N from the y direction,

ΣFy = may

N −W = 0

N = W

= mg

Substituting into the x equation gives

µsmg =
mv2

r

or

r =
v2

µsg

This formula tells an engineer how large to make the radius of
curvature of the road for a given car speed v (say 5 times the
speed limit) and a coefficient of friction µs.
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5.5 Problems

1. A mass m1 hangs vertically from a string connected to a ceiling. A
second mass m2 hangs below m1 with m1 and m2 also connected by
another string. Calculate the tension in each string.

2. What is the acceleration of a snow skier sliding down a frictionless ski
slope of angle θ ?

Check that your answer makes sense for θ = 0o and for θ = 90o.

3. A ferris wheel rotates at constant speed in a vertical circle of radius
R and it takes time T to complete each circle. Derive a formula, in
terms of m, g, R, T , for the weight that a passenger of mass m feels at
the top and bottom of the circle. Comment on whether your answers
make sense. (Hint: the weight that a passenger feels is just the normal
force.)

4. A block of mass m1 on a rough, horizontal surface is connected to a
second mass m2 by a light cord over a light frictionless pulley as shown
in the figure. (‘Light’ means that we can neglect the mass of the cord
and the mass of the pulley.) A force of magnitude F is applied to the
mass m1 as shown, such that m1 moves to the right. The coefficient
of kinetic friction between m1 and the surface is µ. Derive a formula
for the acceleration of the masses. [Serway 5th ed., pg.135, Fig 5.14]
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m

m

1

2

θ

F

5. If you whirl an object of mass m at the end of a string in a vertical
circle of radius R at constant speed v, derive a formula for the tension
in the string at the top and bottom of the circle.
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6. Two masses m1 and m2 are connected by a string passing through a
hollow pipe with m1 being swung around in a circle of radius R and
m2 hanging vertically as shown in the figure.

m2

R m1

Obviously if m1 moves quickly in the circle then m2 will start to move
upwards, but if m1 moves slowly m2 will start to fall.

A) Derive an expression for the tension T in the string.

B) Derive an expression for the acceleration of m2 in terms of the period
t of the circular motion.

C) For what period t, will the mass m2 be at rest?

D) If the masses are equal, what is the answer to Part C)?

E) For a radius of 9.81 m, what is the numerical value of this period?
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7. A) What friction force is required to stop a block of mass m moving
at speed v0, assuming that we want the block to stop over a distance
d ?

B) Work out a formula for the coefficient of kinetic friction that will
achieve this.

C) Evaluate numerical answers to the above two questions assuming
the mass of the block is 1000kg, the initial speed is 60 kmper hour and
the braking distance is 200m.



Chapter 6

POTENTIAL ENERGY &
CONSERVATION OF
ENERGY

SUGGESTED HOME EXPERIMENT:
Design any experiment which illustrates that energy is conserved.

THEMES:
MACHINES.

89
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In this chapterI am going to include the discussion of Chapter 7 and 8
[from Halliday] all together and try to present a single unified approach to
the whole topic of work and energy. The textbook by Halliday should be
read very carefully for specific illustrations of my unified approach.

In our study of mechanics so far our approach has been to identify all
the forces, divide by mass to get acceleration and then solve for velocity,
displacement, time, etc. There is an alternative formulation of mechanics
which does not rely heavily on force, but rather is based on the concepts of
work and energy. The work-energy formulation of mechanics is worthwhile
since sometimes it is easier to work with and involves only scalar quantities.
Also it leads to a better physical understanding of mechanics. However the
key reason for introducing work-energy is because energy is conserved. This
great discovery simplified a great deal of physics and we shall study it in
detail.

6.1 Work

The basic concept of work is that it is force times distance. You do work
on an object by applying a force over a certain distance. When you lift an
object you apply a lifting force over the height that you lift the object.

Machines are objects that allow us to do work more efficiently. For
example, a ramp is what is called a simple machine. If you load objects into
a truck, then a large ramp (large distance) allows you to apply less force to
achieve the same work.

All students should read my handout on simple machines. There it is
clearly explained why work is defined as force × distance.

LECTURE DEMONSTRATION: SIMPLE MACHINES

Actually the proper physical definition of work is more complicated. The
proper definition is

W ≡
∫ rf

ri

~F · d~r

Writing
~F = Fxî+ Fy ĵ + Fzk̂

and
d~r = dx î+ dy ĵ + dz k̂
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gives

W =
∫

(Fxî+ Fy ĵ + Fzk̂) · (dx î+ dy ĵ + dz k̂)

=
∫
Fxdx+ Fydy + Fzdz

Let’s first look at the 1-dimensional case

W =
∫ xf

xi

Fxdx

If the force Fx is constant then it can be taken outside the integral to give

W = Fx

∫ xf

xi

dx = Fx [x]xfxi

= Fx(xf − xi) = Fx∆x
= force × distance

giving us back our original idea. The reason why we have an integral is in
case the force depends on distance. The reason we have the scalar product
~F · d~r is if the force and distance are at some angle, such as a tall person
pulling a toy wagon along with a rope inclined at some angle.

By the way, the units of work must be Newton × meter which is given
a special name, Joule. Thus

Joule ≡ Newton meter

Example If I push a sled with a constant force of 100 N along
a 5 m path, how much work do I do ?

Solution The force is constant and in only 1-dimension, so

W = Fx∆x
= 100 N× 5 m
= 500 Nm
= 500 Joule



92CHAPTER 6. POTENTIAL ENERGY & CONSERVATION OF ENERGY

6.2 Kinetic Energy

Now we know that ~F = m~a and so work can be written

W =
∫ rf

ri

~F · d~r = m

∫ rf

ri

~a · d~r

where m is taken outside the integral because it’s a constant. Let’s just
consider 1-dimension to make things easier. Thus

W =
∫ xf

xi

F dx = m

∫ xf

xi

a dx

Now use an old trick.
a =

dv

dt
=
dv

dx

dx

dt

using the chain rule for derivatives. But v = dx
dt , giving

a =
dv

dx
v

= v
dv

dx

Thus

W = m

∫ xf

xi

a dx = m

∫ xf

xi

v
dv

dx
dx

= m

∫ vf

vi

v dv

= m

[
1
2
v2
]vf
vi

=
1
2
mv2

f −
1
2
mv2

i

Notice that we have found that the work is equal to the change in the
quantity 1

2mv
2. We give this a special name and call it Kinetic Energy

K ≡ 1
2
mv2

Thus we have found that W = Kf −Ki or

W = ∆K

The total work is always equal to the change in kinetic energy. Kinetic
energy is the energy of motion. If m is large and v small, or m is small and
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v large the kinetic energy in both cases will be comparable. Note also that
K must have the same units as W , namely Joule.

What happens when we do work on an object? Well if you lift up an
object, you increase its Potential energy (more about that in a moment). If
you work on an object you can also increase its kinetic energy. If you push a
marble on a table its speed will increase and so you have changed its kinetic
energy.

Example A sled of mass m is stationary on some frictionless
ice. If I push the sled with a force of F over a distance ∆x, what
will be the speed of the sled ?

Solution The force is constant and is 1-dimension, so

W = F ∆x = ∆K = Kf −Ki

=
1
2
mv2

f −
1
2
mv2

i

Now vi = 0, giving

F ∆x =
1
2
mv2

f

or

vf =

√
2F ∆x
m

The neat thing is that we can get exactly the same answer with our old
methods, as the next example shows.
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Example Work out the previous example using the constant ac-
celeration equations.

Solution The acceleration is just

a =
F

m

The constant acceleration equation that helps us is

v2 = v2
0 + 2a(x− x0)

Now x− x0 = ∆x m and v0 = 0 giving

v =
√

2a(x− x0)

=

√
2F ∆x
m

which is the same answer as the previous example.
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In the previous two examples notice how the equation

W = F∆x =
1
2
mv2

f −
1
2
mv2

i

is equivalent to
v2 = v2

0 + 2a(x− x0)

Modify this to

1
2
v2 =

1
2
v2

0 + a(x− x0)

1
2
v2 =

1
2
v2

0 + a∆x

1
2
mv2 =

1
2
mv2

0 +ma∆x

=
1
2
mv2

0 + F∆x

or

F∆x =
1
2
mv2 − 1

2
mv2

0

= ∆K

as we have above !
Thus the work-energy formulation provides an alternative approach to

mechanics.
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6.3 Work-Energy Theorem

Let’s review what we have done. Work was defined as W ≡
∫
~F · d~r and by

putting in F = ma we found that the total work is always ∆K where the
kinetic energy is defined as K ≡ 1

2mv
2. Thus

W ≡
∫ r2

r1

~F · d~r = ∆K.

So far so good. Note carefully what we did to get this result. We put in the
right hand side of F = ma to prove W = ∆K. What we actually did was

W =
∫ r2

r1
m~a · d~r ≡ ∆K

Now let’s not put ~F = m~a but just study the integral
r2∫
r1

~F · d~r by itself.

Before we do that, we must recognize that there are two types of forces
called conservative and non-conservative. You should carefully read Section
8-2 of Halliday to learn about this.

Anyway, to put it briefly, conservative forces “bounce back” and non-
conservative forces don’t. Gravity is a conservative force. If you lift an
object against gravity and let it go then the object falls back to where it
was. Spring forces are conservative. If you pull a spring and then let it go, it
bounces back to where it was. However friction is non-conservative. If you
slide an object along the table against friction and let go, then the object
just stays there.

With conservative forces we always associate a potential energy.
Thus any force ~F can be broken up into the conservative piece ~FC and

the non-conservative piece ~FNC , as in

W ≡
∫ rf

ri

~F · d~r

=
∫ rf

ri

~FC · d~r +
∫ rf

ri

~FNC · d~r

≡ WC +WNC

and each piece corresponds therefore to conservative work WC and non-
conservative work WNC . Let’s define the conservative piece as the negative
of the change in a new quantity called potential energy U . The definition is

WC ≡ −∆U
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where −∆U = −(Uf − Ui) = −Uf + Ui. Now we found that the total work
W was always ∆K. Combining all of this we have

W = WC +WNC = ∆K
= −∆U +WNC

or
∆U + ∆K = WNC

which is the famous Work-Energy theorem.
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6.4 Gravitational Potential Energy

We have been doing a lot of formal analysis. Let’s backtrack a little and
try to understand better what we have done. Let’s look at the conservative
piece a little more closely and examine potential energy in more detail.

Let’s consider the simplest conservative force, namely the weight force
where W = mg which is a constant. Let’s work out WC and ∆U in 1-
dimension.

The gravitational force due to weight is

~FC = −mg ĵ

giving

WC ≡ −∆U =
∫
~FC · d~r

= −(Uf − Ui) = −mg
∫
ĵ · (dx î+ dy ĵ + dz k̂) = −mg

∫ yf

yi

dy

= −Uf + Ui = −mg [y]yfyi = −mg(yf − yi) = −mgyf +mgyi

which gives −Uf = −mgyf , i.e. Uf = mgyf and Ui = mgyi. Thus we can
simply write

U = mgy

which is our expression for gravitational potential energy. If an object is
raised to a large height y then it has a large potential energy.

If we do work in lifting an object, then we give that object potential en-
ergy, just as we can give an object kinetic energy by doing work. Similarly
if an object has potential energy or kinetic energy then the object can do
work by releasing that energy. This is the principle of hydro-electric power
generators. A large amount of water is stored in a dam at a large height y
with a large potential energy. When the water falls and reduces it poten-
tial energy (smaller y) the energy is converted into work to drive electric
generators.

6.5 Conservation of Energy

Let’s summarize again. The work-energy theorem is ∆U + ∆K = WNC

where K ≡ 1
2mv

2 and for gravity U = mgy. WNC is the non-conservative
work, such as friction, heat, sound, etc. It is often zero as in the next
example.



6.5. CONSERVATION OF ENERGY 99

Example If you drop an object from a height H, with what
speed does it hit the ground? Deduce the answer using the work-
energy theorem. Assume WNC = 0.

Solution WNC = 0 because things such as heat and friction are
negligible. Thus the work energy theorem is

∆U + ∆K = 0

or
Uf − Ui +Kf −Ki = 0

or
Uf +Kf = Ui +Ki

That is the total energy

E ≡ U +K

is constant. This is the famous conservation of mechanical en-
ergy, i.e. Ef = Ei.

We have K = 1
2mv

2 and U = mgy giving

mgyf +
1
2
mv2

f = mgyi +
1
2
mv2

i

but yf = 0 and yi = H and vi = 0. Thus

1
2
mv2

f = mgH

or

vf =
√

2gH
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Example Complete the previous example using the constant ac-
celeration equations.

Solution The most convenient equation is

v2 = v2
0 + 2a(y − y0)

but v0 = 0 and y − y0 = 0−H = −H and a = −g, giving

v =
√

2g(y − y0) =
√

2g(0−−H)

=
√

2gH

which is the same answer as before.

Example Prove that a swinging pendulum always rises to the
same height. (Neglect friction.)

Solution With friction ignored we have WNC = 0 and

1
2
mv2

f +mgyf =
1
2
mv2

i +mgyi

I let go of the pendulum with speed vi = 0 and it returns with
speed vf = 0. Thus

mgyf = mgyi

or
yf = yi

LECTURE DEMONSTRATION: Bowling Ball Pendulum
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6.6 Spring Potential Energy

When you pull a spring you feel a force in the opposite direction from which
you pull. Also the force increases with distance. This can be expressed as

~FC = −kx î

in the x direction. Thus

WC ≡ −∆U =
∫
~FC · d~r

= −(Uf − Ui) = −k
∫
x î · (dx î+ dy ĵ + dz k̂)

= −Uf + Ui = −k
∫ xf

xi

x dx = −k
[

1
2
x2
]xf
xi

= −k
(

1
2
x2
f −

1
2
x2
i

)
= −1

2
kx2

f +
1
2
kx2

i

which gives −Uf = −1
2kx

2
f , i.e. Uf = 1

2kx
2
f and Ui = 1

2kx
2
i . Thus we can

simplify and write

U =
1
2
kx2

which is our expression for spring potential energy
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Example A spring with spring constant k has a mass of m on
one end. The spring is stretched by a distance d. When released,
how fast will the mass be moving when it returns to its original
position? (Assume the motion occurs on a horizontal frictionless
surface.)

Solution WNC = 0 giving

Uf +Kf = Ui +Ki

1
2
kx2

f +
1
2
mv2

f =
1
2
kxi +

1
2
mv2

i

Now xf = 0, xi = d m and vi = 0. Thus

mv2
f = kd2

or

vf = d

√
k

m

IMPORTANT NOTE:
The spring is an example of a variable force F = −kx which varies as

distance. Thus the acceleration a = −kx
m is not constant and the constant

acceleration equations cannot be used to solve the previous example. Also
the variable force requires the integral definition of work as W =

∫
~F · d~r.

HALLIDAY SIMULATION: “A Spring”
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6.7 Appendix: alternative method to obtain po-
tential energy

Potential energy is defined through

Wc =
∫
~Fc · d~r ≡ −∆U

Let’s just ignore the vectors for the moment and write∫
Fcdr = −∆U

Thus we must have

Fc = −dU
dr

To see this write∫ f

i
Fcdr = −

∫ f

i

dU

dr
dr = −

∫ Uf

Ui

dU = − [U ]UfUi

= −(Uf − Ui) = −∆U.

(cf. Fundamental Theorem of Calculus).
For gravity we have ~F = −mgĵ or F = −mg and for a spring we have
~F = −kxî or F = −kx. Thus instead of working out the integral

∫
~F · d~r to

get U , just ask what U will give F according to F = −dU
dr .

Example For gravity F = −mg, derive U without doing an in-
tegral.

Solution For gravity dr ≡ dy. The question is what U will give

F = −mg = −dU
dy

The answer is U = mgy. Let’s check:

−dU
dy

= −mgdy
dy

= −mg

which is the F we started with !



104CHAPTER 6. POTENTIAL ENERGY & CONSERVATION OF ENERGY

Example For a spring F = −kx, derive U without doing an
integral.

Solution For a spring d ≡ dx. The question is what U will give

F = −kx = −dU
dx

The answer is U = 1
2kx

2. Let’s check

−dU
dx

= −1
2
k
dx2

dx
= −1

2
k 2x = −kx

which is the F we started with!
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6.8 Problems

1. A block of mass m slides down a rough incline of height H and angle
θ to the horizontal. Calculate the speed of the block when it reaches
the bottom of the incline, assuming the coefficient of kinetic friction
is µk.
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Chapter 7

SYSTEMS OF PARTICLES

SUGGESTED HOME EXPERIMENT:
Locate the center of mass of an object.

THEMES:
FROM ONE TO MANY.

107
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Almost everything we have done so far has referred to the motion of a
single body of mass m, and we have always been able to treat that single
body as though it were a point. But suppose we wich to study the motion
of a complex object such as a spinning baseball bat (Fig. 9-1 Halliday) or
a dancing ballerina (Fig. 9-8 Halliday) ? A bat and a ballerina can be
considered as a collection of a huge number of single particles. We now
want to study the motion of such systems of particles.

7.1 A Special Point

When we studied say a block sliding down an incline, and replaced it with
just a single point and studied the motion of that point, we made a very
convenient simplification. This special point is called the center of mass of an
object and by studying its motion alone we avoid all the extra complications
of a body of finite size.

“The center of mass of a body or a system of bodies is the points that
moves as though all of the mass were aconcentrated there and all exter-
nal forces were applied there.” [Halliday, 1997]. Notice we have included
a system of bodies. For instance the motion of the Earth-Moon system
around the Sun is actually governed by the center of mass of the two-body
Earth-Moon system.

An easy way to find the center of mass is to just regard it as a balance
point. For example the center of mass of a ruler is located as the point
where you can balance the ruler on your finger without it falling off. Thus
we already know the answer for a ruler ! The center of mass is located at
the center. We will prove this mathematically in a moment.

7.2 The Center of Mass

Systems of Particles
Now let’s come up with a mathematical definition for center of mass

which is more precise than just saying it’s the balance point (although the
balance point always gives the correct answer). The location of the center
of mass is defined as

~rcm ≡ 1
M

∑n
i mi~ri

(7.1)



7.2. THE CENTER OF MASS 109

where the sum over i running from 1 to n means sum over all of the point
particles within the body, assuming there are a total of n point particles.
M is the total mass of all the individual bodies and can be written

M ≡
n∑
i

mi (7.2)

We have defined the center of mass. Now let’s see if our definition makes
sense. First of all it’s a vector equation and so what it really means is the
usual 3-dimensional decomposition as

xcm ≡
1
M

n∑
i

mixi (7.3)

ycm ≡
1
M

n∑
i

miyi (7.4)

zcm ≡
1
M

n∑
i

mizi (7.5)

Let’s just consider the 1-dimensional version for the case of 2 bodies only.
Then the total mass M becomes

M = m1 +m2 (7.6)

and (7.2) becomes

xcm =
m1x1 +m2x2

m1 +m2
. (7.7)

Does this make sense ? Let’s see.
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Example Where is the position of the center of mass for a sys-
tem consisting of two dumbells, each with the same mass m each
at the end of a 4ft massless rod ?

Solution Now you know that the answer to this must be at the
center of the rod. After all that is the balancing point. That is
our guess is that xcm = 2ft. Let’s use our definition of center of
mass, equation (7.1) and see if it gives this answer.

Now we have a 1-dimensional problem and therefore (7.1) re-
duces to only (7.3). Furthermore we only have two bodies and
this reduces further to (7.7). Choosing the origin of the x-
coordinate system to be at the left dumbell gives x1 = 0ft and
x2 = 4ft. Substituting gives

xcm =
m× 0ft+m× 4ft

m+m
= 2ft (7.8)

which is exactly what we expected. Therefore we can believe that
our definition for center of mass (7.1) makes perfect sense.

Let’s look at what happens if we use a different coordinate system.

Example Repeat the previous problem, but with the x-origin
located at the center between the two dumbells instead of on the
left dumbell.

Solution Well now we would guess that the center of mass would
be given by xcm = 0. Let’s see if our formula works here. With
the origin of the x-axis chosen to be at the center of the dumbells
we have the position of each dumbell given by x1 = −2ft and
x2 = +2ft respectively. Subsituting we get

xcm =
m× (−2ft) +m× (+2ft)

m+m
= 0 (7.9)

which is exactly what we expected. Therefore again we can be-
lieve that our definition for center of mass (7.1) makes perfect
sense.
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Being able to find the center of mass is actually useful, as the following
example shows.

Example A baby of mass mB sits on a see-saw. Mary’s mass is
mM . Where should Mary sit in order to balance the see-saw ?
Work out a formula and also a numerical answer if mB = 10 kg
and mM = 80 kg.

Solution Again our intuition tells us that we can guess that the
ratio of the distances should be 1/8. That is the baby should be
8 times as far away from the center of the see-saw as Mary. Let’s
see if our center of mass definition (7.1) tells us this.

Again this is a 1-dimensional, 2-body problem and so the formula
for the center of mass is again

xcm =
mBxB +mMxM

mB +mM
.

Now we want the center of mass located at the center of the
see-saw and we will put the origin of our x-axis there as well.
Thus

xcm =
mBxB +mMxM

mB +mM
= 0

giving

mBxB +mMxM = 0

which means that

mBxB = −mMxM

or
xB
xM

= −mB

mM
= −m

M
or

xM = −M
m
xB

Putting in numbers we get

xM = −80 kg
10 kg

xB = −8 xB

just as we suspected.
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Rigid Bodies

Above we considered finding the center of mass of two bodies. This can
easily be extended to 3 or more bodies and some of this will be explored in
the homework. That’s all well and good, but how do we find the center of
mass of systems made up of millions of particles such as a baseball bat. In
other words how do we find the center of mass of rigid bodies ? That’s what
we will look at now.

In physics whenever we want to change our study from a collection of
discrete particles (desribed by a sum

∑
i) to a continuous collection of parti-

cles, the sum just changes to an integral. Hopefully this makes perfect sense
from what you have studied in calculus. You all now know that an integral
is just the limit of a sequence of sums.

Now each of the millions of particles in a rigid body has a tiny little mass
denoted by dm. For a discrete collection of particles we had (7.1) as

xcm ≡
1
M

n∑
i

ximi (7.10)

but for a continuous distribution of particles we now define

xcm ≡
1
M

∫
xdm (7.11)

This is easier to work with if we introduce density ρ as mass / volume or

ρ ≡ mass

volume
≡ dm

dV
≡ M

V
. (7.12)

where dV is the volume occupied by the mass dm. Thus our definition can
be written

xcm ≡ 1
M

∫
xdm ≡ 1

M

∫
xρdV

and the same for y and z. If the density is constant, then it can be taken
outside the integral to give

xcm = 1
V

∫
xdV

and the same for y and z.
There’s one additional catch. Above we defined a 3-dimensional density

as mass / volume. But what if we have a dense 1-dimensional object such
as a very long and thin pencil. Well then we will want a linear mass density.
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Instead of ρ, we use the symbol λ for linear mass density and define it
as

λ ≡ mass
length

≡ dm

dL
≡ M

L

so that now we have

xcm ≡
1
M

∫
x dm =

1
M

∫
xλ dL

and for a constant λ,

xcm =
1
L

∫
x dL

Because this is linear mass density we do not have any equations for x or
y. Similarly we may have mass distributed only in 2 dimensions such as the
surface of a table. We use area mass density defined as

σ ≡ mass
area

≡ dm

dA
≡ M

A

giving

xcm ≡
1
M

∫
x dm =

1
M

∫
xσ dA

and for constant σ,

xcm =
1
A

∫
x dA

and similarly for y; but there is no equation for z. (why?)

Example Locate the center of mass of a very thin pencil of
length L balanced sideways.

Solution Again using intuition we know the answer must be at
the center of the pencil. Now the element of length dL ≡ dx,
and the linear mass density λ of the pencil is constant, so that

xcm =
1
L

∫ L

0
x dx

We have taken the origin (x = 0) to be at one end of the pencil.
Thus

xcm =
1
L

[
1
2
x2
]L

0
=

1
L

(
1
2
L2 − 0

)
=

1
2
L

which is just the answer we expected! Thus we can believe that
the formulas given previously really do work.
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7.3 Newton’s Second Law for a System of Particles

For a single particle of mass m we already have encountered Newton’s second
law, namely

∑ ~F = m~a, and
∑ ~F are all the forces acting on the mass m and

~a is the resulting acceleration of the mass m. What happens for a system
of particles?

The end result is ∑ ~Fext = M~acm (7.13)

where
∑ ~Fext is the sum of all external forces acting on the body (all the

internal forces cancel out to zero), M is the total mass of the body and ~acm

is the acceleration of the center of mass of the body.

Example Prove equation (7.13).

Solution Recall our definition of center of mass, namely

~rcm ≡
1
M

∑
i

mi~ri

or
M~rcm =

∑
i

mi~ri

Taking the time derivative gives

M~vcm =
∑
i

mi~vi

and taking the time derivative again gives

M~acm =
∑
i

mi~ai

=
∑
i

~Fi

which is just the sum of all the forces acting on each mass mi.
These forces will be both external and internal. However for a
rigid body all the internal forces must cancel because in a rigid
body the particles don’t move relative to each other. Thus

∑
i

~Fi

just becomes
∑ ~Fext in agreement with (7.13).
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7.4 Linear Momentum of a Point Particle

A more fundamental way of discussing Newton’s second law is in terms of a
new quantity called momentum. It is defined as

~p ≡ m~v

and it is important because it is a conserved quantity just like energy. The
proper way to write Newton’s second law is

∑ ~F =
d~p

dt

Now d~p
dt = d

dt(m~v) = md~v
dt = m~a if the mass is constant. Thus d~p

dt = m~a

if the mass is constant. (If the mass is not constant then d~p
dt = d

dt(m~v) =
md~v

dt + dm
dt ~v = m~a+ dm

dt ~v so that Newton’s second law actually reads
∑ ~F =

m~a+ dm
dt ~v).

7.5 Linear Momentum of a System of Particles

The total momentum ~P of a system of particles is just the sum of the
momenta of each individual particle, namely

~P =
∑
i

~pi

Now from the previous example we had M~vcm =
∑
i
mi~vi =

∑
i
~pi, giving the

total momentum of a system of particles as

~P = M~vcm

which is a very nice handy formula for the total momentum equals total mass
multiplied by the velocity of the center of mass. Taking the time derivative
gives d~P

dt = M d~vcm
dt = M~acm assuming that M is constant. Thus Newton’s

second law for a system of particles can be written

∑
~Fext =

d~P

dt
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7.6 Conservation of Linear Momentum

If all the external forces are zero (
∑ ~Fext = 0) then d~P

dt = 0 which implies
that the total momentum

~P = constant (7.14)

Note that this is only true if all the external forces are zero. Halliday calls
this a closed, isolated system.

Another way of stating (7.14) is

~Pi = ~Pf

Remembering that ~P is the total momentum of a system of particles (~P =
~p1 + ~p2 + ~p3 + · · ·), the conservation equation is

~p1i + ~p2i + ~p3i + · · · = ~p1f + ~p2f + ~p3f + · · ·

This is a vector equation, so we must always write it out in x, y, or z com-
ponents.

LECTURE DEMONSTRATION: Explosion: spring release on air track.
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Example A rifle of mass mR fires a bullet of mass mB which
emerges at a speed of vBf . With what speed does the rifle recoil ?

Solution The bullet-rifle system is a closed, isolated system.
When the rifle is held at rest the sum of all external forces is
zero. Thus momentum is conserved for the bullet (B)–rifle (R)
two body system. The total momentum is ~P = ~pR + ~pB, so that
conservation of momentum is

~pRi + ~pBi = ~pRf + ~pBf

Now this is a vector equation, so it must be written in terms of
components, namely

pRxi + pBxi = pRxf + pBxf
pRyi + pByi = pRyf + pByf

but there is only motion in the x direction and nothing is hap-
pening in the y direction, so let’s re-write the x-equation, leaving
off the x’s as

pRi + pBi = pRf + pBf

or
mRvRi +mBvBi = mRvRf +mBvBf

But vRi + vBi = 0 because before the gun is fired (initial situ-
ation) the bullet and gun do not move. After the gun is fired
(final situation) they both move. Thus

O = mRvRf +mBvBf

⇒ vRf = −mB

mR
vBf

where the minus sign indicates that the rifle moves in a direction
opposite to the bullet.
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7.7 Problems

1. A particle of mass m is located on the x axis at the position x = 1 and
a particle of mass 2m is located on the y axis at position y = 1 and
a third particle of mass m is located off-axis at the position (x, y) =
(1, 1). What is the location of the center of mass?

2. Consider a square flat table-top. Prove that the center of mass lies at
the center of the table-top, assuming a constant mass density.

3. A child of mass mc is riding a sled of mass ms moving freely along an
icy frictionless surface at speed v0. If the child falls off the sled, derive
a formula for the change in speed of the sled. (Note: energy is not
conserved !) WRONG WRONG WRONG ??????????????
speed of sled remains same - person keeps moving when fall off ???????



Chapter 8

COLLISIONS

SUGGESTED HOME EXPERIMENT:
Design a simple experiment illustrating momentum conservation.

THEMES:
COLLISIONS.

119
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8.1 What is a Collision?

Read

8.2 Impulse and Linear Momentum

Leave out

8.3 Elastic Collisions in 1-dimension

Recall our work energy theorem for a single particle,

∆U + ∆K = WNC

or
Uf − Ui +Kf −Ki = WNC

or
Uf +Kf = Ui +Ki +WNC

If WNC 6= 0 then energy will not be conserved. For a two-body collision
process, then an inelastic collision is one in which energy is not conserved
(i.e. WNC 6= 0), but an elastic collision is one in which energy is conserved
(WNC = 0).

Now if you think of a collision of two billiard balls on a horizontal pool
table then Uf = mgyf and Ui = mgyi, but yf = yi and thus Uf = Ui or
∆U = 0. Thus the above work-energy theorem would be

Kf = Ki +WNC

Thus for collisions where Ui = Uf , we often say more simply that an elas-
tic collision is when the kinetic energy alone is conserved and an inelastic
collision is when it is not conserved.

In this section we first will deal only with elastic collisions in 1-dimension.
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Example A billiard ball of mass m1 and initial speed v1i hits a
stationary ball of mass m2. All the motion occurs in a straight
line. Calculate the final speeds of both balls in terms of m1, m2,
v1i, assuming the collison is elastic (Is this a good assumption?).

Solution All the motion is in 1-dimension and so conservation
of momentum (with v2i = 0) is just

m1v1i + 0 = m1v1f +m2v2f

and conservation of kinetic energy is

1
2
m1v

2
1i + 0 =

1
2
m1v

2
1f +

1
2
m2v

2
2f

Here we have two equations with the two unknowns v1f and v2f .
Thus the rest of the problem is simply doing some algebra. Let’s
solve for v1f in the first equation and then substitute into the
second equation to get v2f . Thus

v1f = v1i −
m2

m1
v2f

or

v2
1f = v2

1i − 2
m2

m1
v2fv1i +

(
m2

m1

)2

v2
2f

Substituting this into the conservation of kinetic energy equation
gives

1
2
m1v

2
1i =

1
2
m1v

2
1i −m2v2fv1i +

1
2
m2

2

m1
v2

2f +
1
2
m2v

2
2f

which simplifies to

0 = −2m2v1i + v2f

(
m2

2

m1
+m2

)

giving

v2f =
2m2

m2
2

m1
+m2

v1i
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which is finally

v2f =
2m1

m1 +m2
v1i

Substituting this back into the conservation of momentum equa-
tion gives

m1v1i = m1v1f +
2m1m2

m1 +m2
v1i

which gives

v1f = v1i

(
1− 2m2

m1 +m2

)
= v1i

m1 +m2 − 2m2

m1 +m2

or

v1f =
m1 −m2

m1 +m2
v1i

There are some interesting special situations to consider.

1) Equal masses (m1 = m2). This implies that v1f = 0 and
v2f = v1i. That is the projectile billiard ball stops and
transfers all of its speed to the target ball. (This is also
true if the target is moving.)

2) Massive target (m2 À m1). In this case we get v1f ≈ −v1i

and v2f ≈ 2m1
m2

v1i ≈ 0 which means the projectile bounces
off at the same speed and the target remains stationary.

3) Massive projectile (m1 À m2). Now we get v2f ≈ 2v1i and
v1f ≈ v1i meaning that the projectile keeps charging ahead
at about the same speed and the target moves off at double
the speed of the projectile.

COMPUTER SIMULATIONS

LECTURE DEMONSTRATION: colliding pendula (Sample Problem 10-3)

All students should carefully study the Moving Target discussion on Pg. 220
of Halliday.
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8.4 Inelastic Collisions in 1-dimension

A completely inelastic collision is defined as one in which the two particles
stick together after the collision.

Example Repeat the previous example for a completely inelas-
tic collision.

Solution If the particles stick to each other after the collision
then their final speeds are the same; let’s call it V ,

v1f = v2f ≡ V

And writing v1i ≡ v we have from conservation of momentum

m1v + 0 = m1V +m2V

or

V =
m1

m1 +m2
v

Let’s look again at the special situations.

1) Equal masses (m1 = m2). This gives

V =
1
2
v

2) Massive target (m2 À m1). This gives

V ≈ m1

m2
v ≈ 0

3) Massive projectile (m1 À m2). This gives

V ≈ v
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8.5 Collisions in 2-dimensions

Glancing collisions (i.e. not head-on) are more complicated to analyze. Fig-
ure 10.1 shows a typical configuration.

1i
v

2f
v

1f
v

x

y

m1
m2 1θ

2θ

FIGURE 10.1 Glancing collision.
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Example Write down the conservation of energy and momen-
tum equations for the glancing collision depicted in Fig. 10.1
where the target ball is initially at rest.

Solution Conservation of momentum is

~p1i + ~p2i = ~p1f + ~p2f

but ~p2i = 0. In x and y components these are

m1v1ix = m1v1fx +m2v2fx

m1v1iy = m1v1fy +m2v2fy

or

m1v1i = m1v1f cos θ1 +m2v2f cos θ2

0 = −m1v1f sin θ1 +m2v2f sin θ2

If the collision is elastic we also have conservation of kinetic
energy,

1
2
m1v

2
1i =

1
2
m1v

2
1f +

1
2
m2v

2
2f

These three equations must then be solved for the quantities of
interest.

Students should carefully study sample Problems 10-7, 10-8 [Halliday].
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Example A ball of mass m1 and speed v1i collides with a sta-
tionary target ball of mass m2, as shown in Fig. 10.1. If the
target is scattered at an angle of θ2 what is the scattering angle
θ1 of the projectile in terms of m1, m2, v1i, θ2 and v2f where v2f

is the final speed of the target ?

Solution Conservation of momentum gives

Σ~pi = Σ~pf

or
Σpix = Σpfx and Σpiy = Σpfy

The x direction gives

m1v1i + 0 = m1v1f cos θ1 +m2v2f cos θ2

0 = −m1v1f sin θ1 +m2v2f sin θ2

We want to find θ1. Solve the first and second equations for θ1

giving

cos θ1 =
m1v1i −m2v2f cos θ2

m1v1f

and
sin θ1 =

m2v2f sin θ2

m1v1f

giving

tan θ1 =
m2v2f sin θ2

m1v1i −m2v2f cos θ2

(Notice that this result is valid for both elastic and inelastic
collisions. We did not use conservation of energy.)

8.6 Reactions and Decay Processes

Leave out.

Center of Mass Reference Frame
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Remember that the total momentum ~P of a system of particles was given
by ~P = M~vcm or

~P = M~vcm =
∑
i

~pi =
∑
i

mi~vi

Up to now we have been measuring velocities with respect to the “Lab”
reference frame, which is the name for the reference frame associated with
a stationary target. The Lab does not move, or in other words ~vLab = 0.

We can also measure velocities with respect to the center of mass frame
where ~vcm = 0. This is also often called the center of momentum frame
because if ~vcm = 0 then

∑
i
~pi = 0. If ~v = velocity in Lab frame and ~u =

velocity in cm frame then
~u = ~v − ~vcm
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Example A red billiard ball of mass mR moving at a speed vR
collides head on with a black billiard ball of mass mB at rest. A)
What is the speed of the center of mass ? B) What is the speed
of both balls in the cm frame ?

Solution

vB = 0

vcm =
mR~vR +mB~vB
mR +mB

=
mR × vR + 0
mR +mB

=
mR

mR +mB
vR

which is the speed of the center of mass. Now get the speed of
the red ball via

uR = vR − vcm = vR −
mR

mR +mB
vR

= vR(1− mR

mR +mB
) = vR(

mR +mB −mR

mR +mB
)

=
mB

mR +mB
vR

and the speed of the black ball is

uB = vB − vcm

= 0− mR

mR +mB
vR

= − mR

mR +mB
vR
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8.7 Problems

1. In a game of billiards, the player wishes to hit a stationary target ball
with the moving projectile ball. After the collision, show that the sum
of the scattering angles is 90o. Ignore friction and rolling motion and
assume the collision is elastic. Also both balls have the same mass.
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Chapter 9

ROTATION

SUGGESTED HOME EXPERIMENT:
Calculate the speed of an ant at the edge of the minute hand on your kitchen
clock.

THEMES:
SPIN.

131
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9.1 Translation and Rotation

We have studied how point particles and systems of particles (rigid bodies)
move as a whole. The next thing to consider is rotational motion, as opposed
to the translational motion studied previously.

When studying rotational motion it is very convenient and instructive to
develop the whole theory in analogy to translational motion. I have therefore
written the Master Table that we shall refer to often.

9.2 The Rotational Variables

Previously we denoted translational position in 1-dimension with the symbol
x. If a particle is located on the rim of a circle we often use s instead of x
to locate its position around the circumference of the circle. Thus s and x
are equivalent translational variables

s ≡ x

Now the angular position is described by angle which is defined as

θ ≡ s

r

where s (or x) is the translation position and r is the radius of the circle.
Notice that angle has no units because s and r both have units of m. The
angle defined above is measured in radian, but of course this is not a unit.
One complete revolution is 2π radian often also called 360◦. (All students
should carefully read Pg. 240 of Halliday for a clear distinction between
radian and degrees.)

Translational position is given by x (or s) and translation displacement
was ∆x ≡ x2 − x1 (or ∆s ≡ s2 − s1). Similarly angular displacement is

∆θ ≡ θ2 − θ1

and because θ ≡ s
r then it is related to translation displacement by

∆θ =
∆s
r

=
∆x
r

This is the first entry in the Master Table.
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Secondly we defined translational average velocity as v̄ ≡ ∆x
∆t ≡ ∆s

∆t and
instantaneous velocity as v ≡ dx

dt = ds
dt . Similarly we define average angular

velocity as

ω̄ ≡ ∆θ
∆t

and instantaneous velocity as

ω ≡ dω

dt

Now because we have ∆θ = ∆x
r we must also have ∆θ

∆t = ∆x
r∆t or ω̄ = v̄

r as
relating average velocity and average angular velocity. Similarly

ω =
v

r

This is the second entry in the Master Table.
Finally the angular acceleration α is defined as

α ≡ dω

dt

and
α =

a

r

relating angular acceleration α to translational acceleration at. (Notice that
a is not the centripetal acceleration. For uniform circular motion α = 0 and
at = 0 because the particle moves in a circle at constant speed v and the
centripetal acceleration is ar = v2

r . For non-uniform circular motion, where
the speed keeps increasing (or decreasing) then α 6= 0 and a 6= 0.) See the
third entry in the Master Table.
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9.3 Are Angular Quantities Vectors?

Yes. Read Halliday.

9.4 Rotation with Constant Angular Acceleration

The equations for constant angular acceleration are obtained in identical
fashion to the translational constant acceleration equations. They are listed
in the Master Table.

Example A flywheel is spinning at 100 revolutions per second
and is stopped by a brake in 10 seconds. What is the angular
acceleration of the flywheel ?

Solution The initial angular velocity is

ω0 = 100× 2π sec−1

and the final angular velocity is ω = 0. Using ω = ω0 + αt gives

α =
ω − ω0

t
=

0− 100× 2π sec−1

10 sec
= −62.8 sec−2

Study Sample Problems 11-3, 11-4, 11-5.

9.5 Relating the Linear and Angular Variables

We have already discussed this. Read Halliday. Especially read about at
and ar on Pg. 246 Halliday.
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9.6 Kinetic Energy of Rotation

To calculate the kinetic energy of a rotating object we add up all of the
kinetic energies of the individual particles making up the object, namely

K =
∑
i

1
2
miv

2
i

The speeds are vi = ωri. Note we do not write vi = ωiri because the
rotational velocity of all particles is the same value ω. That is ω1 = ω2 =
ω3 = · · · ≡ ω. Substituting gives

K =
∑
i

1
2
miω

2r2
i =

1
2

(∑
i

mir
2
i

)
ω2

Define rotational inertia or rotational mass as

I ≡
∑
i

mir
2
i

and we get

K =
1
2
Iω2

which looks exactly like K = 1
2mv

2 where instead of velocity v we have ω
and instead of mass (or inertia) m we have rotational mass (or rotational
inertia) I. Recall that mass, or inertia, tells us how difficult it is to move
an object. Similarly the rotational mass, or rotational inertia, tells us how
difficult it is to rotate an object. (Carefully read Pg. 248, Halliday.) See
Master Table.
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9.7 Calculating the Rotational Inertia

For a continuous distribution of mass the rotational inertia has the sum
replaced by an integral, namely

I ≡∑
i
r2
imi =

∫
r2dm

=
∫
r2ρdV =

∫
r2σdA =

∫
r2λdL

where dm has been replaced by ρdV or σdA or λdL depending on whether
the rigid body is 3-dimensional, 2-dimensional or 1-dimensional.

Now when you spin an object, you always spin it about some axis. Take
your physics book for example. It is easy to spin about an axis through the
center (i.e. center of mass) but more difficult to spin about an axis through
the edge of the book.

Remember that the rotational inertia I tells us how difficult it is to
get something rotating, or spinning, just as ordinary inertia m tells us how
difficult it is to get something moving. Thus I is small for the spin axis
through the center of the book, but large for an axis through the edge of
the book. In the formula for I =

∑
i
r2
imi =

∫
r2dm then r will always be

measured from the rotation axis.
A very handy formula which helps a lot in calculating I is the famous

parallel axis theorem,
I = Icm +Mh2

where I is the rotational inertia about an axis located a distance h from the
center of mass and parallel to a line through the center of mass. M is the
total mass of the whole rigid body. This theorem is proved on Pg. 250 of
Halliday.

Let’s now look at some examples of how to calculate I. Many results are
listed on Pg. 249 of Halliday.
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Example A rod of length L and negligible mass has a dumbbell
of mass m located at each end. Calculate the rotational inertia
about an axis through the center of mass (and perpendicular to
the rod).

Solution See Fig. 11-13(a) in Halliday, Pg. 250. Each dumbbell
is a discrete mass and so we use

I =
∑
i

r2
imi

= r2
1m+ r2

2m

where there are only two terms because there are only two dumb-
bells, and also m1 = m2 ≡ m. Now r1 = 1

2L and r2 = −1
2L

giving

I =
(

1
2
L

)2

m+
(
−1

2
L

)2

m

=
1
2
mL2

Example Repeat the previous example for an axis through one
of the dumbbells (but still perpendicular to the rod).

Solution See Fig. 11-13(b) in Halliday, Pg. 250. Now we have
r1 = 0 and r2 = L giving

I = r2
1m+ r2

2m

= 0 + L2m

= mL2
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Example Repeat the previous example using the parallel axis
theorem.

Solution The parallel axis theorem is I = Icm +Mh2 where the
total mass if M = 2m and h is the distance from the center of
mass to the rotation axis. Thus h = L/2 giving

I =
1
2
mL2 + (2m)

(
L

2

)2

= mL2

This is the same as before and so we have good reason to believe
that the parallel axis theorem is true.

Example Calculate the rotational inertia of a thin uniform rod
of mass M and length L about an axis through the center of the
rod (and perpendicular to its length).

Solution See the figure in Table 11-2 of Halliday, Pg. 249. Let
the linear mass density of the rod be λ ≡ M

L . Then (with dr =
dL)

I =
∫
r2dm =

∫ L/2

−L/2
r2 λ dr

where the integration limits are −L/2 to L/2 because the axis is
through the center of the rod. The rod is uniform which means
λ is constant and can be taken outside the integral to give

I = λ

∫ L/2

−L/2
r2dr = λ

[
1
3
r3
]L/2
−L/2

= λ

[
1
3

(
L

2

)3

− 1
3

(
−L

2

)3
]

= λ
L3

12

=
M

L

L3

12
=

1
12
ML2
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Example Repeat the previous example for an axis through one
end of the rod.

Solution Now we have

I = λ

∫ L

0
r2dr = λ

[
1
3
r2
]2

0

= λ

(
1
3
L3 − 0

)
= λ

1
3
L3

=
M

L

1
3
L3 =

1
3
ML2

Example Repeat the previous example using the parallel axis
theorem.

Solution

I = Icm +Mh2

=
1
12
ML2 +M

(
L

2

)2

=
1
3
ML2
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9.8 Torque

We now want to determine the rotational equivalent of force. Rotational
force is called torque. It is a vector defined as the cross product of ~r and ~F ,

~τ ≡ ~r × ~F

Its magnitude is

~τ = rF sinφ

where φ is the angle between ~r and ~F . Now r sinφ is just a perpendicular
distance r⊥ = r sinφ, so that

τ = r⊥F

Carefully read Halliday Pg. 252-253 for a detailed discussion of the meaning
of torque. See the Master Table.

9.9 Newton’s Second Law for Rotation

Now just as we have
∑ ~F = m~a for translational dynamics we would guess

that ∑
~τ = I ~α

would be Newton’s second law for rotation. This is exactly right!

Example Do Sample Problem 11-11 in class (Pg. 253 Halliday).

9.10 Work and Rotational Kinetic Energy

We have seen that in 1-dimension, work is W =
∫
F dx. Similarly for rota-

tions we have
W ≡

∫
τ dθ

See Master Table.
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MASTER TABLE

Translational Motion Rotational Motion Relation
Displacement ∆x ≡ ∆s

Velocity v ≡ dx
dt

Acceleration at ≡ dv
dt

Angular Displ. ∆θ

Angular Vel. ω ≡ dθ
dt

Angular Accel. α ≡ dω
dt

∆x = ∆s = r∆θ

v = rω

at = rα

Constant Accel. Eqns:

v = v0 + at

v2 = v2
0 + 2a(x− x0)

x− x0 = v+v0
2 t

= v0t+ 1
2at

2

= vt− 1
2at

2

Constant Angular Accel:

ω = ω0 + αt

ω2 = ω2
0 + 2α(θ − θ0)

θ − θ0 = ω+ω0
2 t

= ω0t+ 1
2αt

2

= ωt− 1
2αt

2

K = 1
2mv

2

∑ ~F = m~a

W =
∫
F dx

K = 1
2Iω

2∑
~τ = I~α

W =
∫
τdθ

I ≡∑
i
r2
imi =

∫
r2dm

~τ ≡ ~r × ~F
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9.11 Problems

1. Show that the ratio of the angular speeds of a pair of coupled gear
wheels is in the inverse ratio of their respective radii. [WS 13-9]

2. Show that the magnitude of the total linear acceleration of a point
moving in a circle of radius r with angular velocity ω and angular
acceleration α is given by a = r

√
ω4 + α2 [WS 13-8]

3. The turntable of a record player rotates initially at a rate of 33 revo-
lutions per minute and takes 20 seconds to come to rest. How many
rotations does the turntable make before coming to rest, assuming
constant angular deceleration ?

4. A cylindrical shell of mass M and radius R rolls down an incline of
height H. With what speed does the cylinder reach the bottom of the
incline ? How does this answer compare to just dropping an object
from a height H ?

5. Four point masses are fastened to the corners of a frame of negligible
mass lying in the xy plane. Two of the masses lie along the x axis at
positions x = +a and x = −a and are both of the same mass M . The
other two masses lie along the y axis at positions y = +b and y = −b
and are both of the same mass m.

A) If the rotation of the system occurs about the y axis with an angu-
lar velocity ω, find the moment of inertia about the y axis and the
rotational kinetic energy about this axis.

B) Now suppose the system rotates in the xy plane about an axis through
the origin (the z axis) with angular velocity ω. Calculate the moment
of inertia about the z axis and the rotational kinetic energy about this
axis. [Serway, 3rd ed., pg. 151]

6. A uniform object with rotational inertia I = αmR2 rolls without
slipping down an incline of height H and inclination angle θ. With
what speed does the object reach the bottom of the incline? What
is the speed for a hollow cylinder (I = mR2) and a solid cylinder
(I = 1

2MR2)? Compare to the result obtained when an object is
simply dropped from a height H.
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7. A pencil of length L, with the pencil point at one end and an eraser
at the other end, is initially standing vertically on a table with the
pencil point on the table. The pencil is let go and falls over. Derive a
formula for the speed with which the eraser strikes the table, assuming
that the pencil point does not move. [WS 324]
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Chapter 10

ROLLING, TORQUE &
ANGULAR MOMENTUM

SUGGESTED HOME EXPERIMENT:
Design a simple experiment showing conservation of angular momentum.

THEMES:
SPIN.

145
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10.1 Rolling

All students should read this whole section in Halliday carefully. Note that
when a wheel rolls without slipping, then static friction is involved. When
the wheel slips then kinetic friction is involved. This is discussed in Halliday.
I shall now discuss an important example. (See also Sample Problems 12-1,
12-2, 12-3.)

Example Calculate the rotational inertia of a hollow cylinder
and a solid cylinder, about the long axis through the center of
the cylinder as shown in Fig. 12.1.

dA = 2 π r dr

L

FIGURE 12.1 Solid Cylinder.

Solution The rotational inertia of a hollow cylinder is simply

I = MR2

To calculate the rotational inertia of the solid cylinder, refer to
Fig. 12.1. The small element of area indicated is dA = 2πrdr
corresponding to a small element of volume dV = dA L =
2πrdrL. Thus the rotational indertia (with ρ = M

LπR2 being
the density of the cylinder) is

I =
∫
r2dm
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=
∫
r2ρdV

= ρ2πL
∫ R

0
r3dr

= ρ2πL
1
4
R4

=
M

LπR2
2πL

1
4
R4

=
1
2
MR2

Example If a solid cylinder and a hollow cylinder with the same
mass and radius roll down an incline, which reaches the bottom
first?

Solution The kinetic energy of a rolling object now consists of
two terms; one rotational and one translational, i.e.

K =
1
2
Icmω

2 +
1
2
Mv2

cm ≡ Krotation +Ktranslation

where Icm is the rotational inertia about the center of mass and
vcm is the translational speed of the center of mass. The rota-
tional inertias of Hoop, Disk and Sphere are

IHollow cylinder = MR2

ISolid cylinder =
1
2
MR2

The hollow cylinder has the larger moment of inertia and there-
fore more kinetic energy will go into rotation, and thus less into
translation. Therefore the solid cylinder reaches the bottom first.

LECTURE DEMONSTRATION: show the above example.

10.2 Yo-Yo

Read
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10.3 Torque Revisited

Read carefully; Review of Cross Product

10.4 Angular Momentum

10.5 Newton’s Second Law in Angular Form

We have previously defined torque (or angular force) as ~τ ≡ ~r × ~F . Now
Newton’s Second Law is

∑ ~F = d~p
dt where ~p ≡ m~v is the momentum. We

therefore expect an angular version of Newton’s Second Law involving an-
gular force or torque and angular momentum ~l. Thus we expect

∑
~τ =

d~l

dt

But we haven’t said what ~l is. We can figure it out.
Consider the following quantity,

d

dt
(~r × ~p) =

d~r

dt
× ~p+ ~r × d~p

dt

= ~v ×m~v + ~r ×md~v

dt
= m(~v × ~v + ~r × ~a)

but ~v × ~v = 0 giving

d

dt
(~r × ~p) = m~r × ~a

= ~r × ~F

= ~τ

Thus the unknown ~l must be

~l ≡ ~r × ~p
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10.6 Angular Momentum of a System of Particles

Let’s call the angular momentum of a system of particles ~L. In terms of the
angular momentum ~li of each particle, it is

~L =
∑
i

~li

and Newton’s Second Law for a system of particles becomes

∑
~τext =

d~L

dt

as we would expect, based on analogy with
∑ ~Fext = d~p

dt where ~p was the
total momentum.

10.7 Angular Momentum of a Rigid Body Rotat-
ing About a Fixed Axis

In a rigid body, all particles rotate at the same speed. Halliday (Pg. 281)
shows that

~L = I~ω

which is exactly analogous to ~p = m~v.

10.8 Conservation of Angular Momentum

For translational motion we had
∑ ~Fext = d~P

dt and for
∑ ~Fext = 0 we had ~P =

constant, i.e. conservation of momentum. Similarly from
∑
~τext = d~L

dt , then
if there are no external torques

∑
~τext = 0 then the total angular momentum

is conserved, namely
~L = constant
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LECTURE DEMONSTRATION: example below

Example A student is spinning on a stool and holding two
heavy weights with outstretched hands. If the student brings
the weights closer inward, show that the spin rate increases.

Solution For a rigid body spinning about a fixed axis we had
~L = I~ω. Angular momentum is conserved, thus

~Li = ~Lf

or
Iiωi = Ifωf

The moment of inertia of the two weights is I = 2Mr2 where r
is the length of the student’s arm. The rotational inertia of the
student remains the same. Thus

2Mr2
i ωi = 2Mr2

fωf

giving

ωf =

(
ri
rf

)2

ωi

And ri > rf giving ωf > ωi.
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MASTER TABLE 2

Translational Motion Rotational Motion Relation∑
~F = m~a =

d~p

dt

∑
~τ = I~α =

d~l

dt
~l = ~r × ~p

~p = m~v ~L = I~ω
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10.9 Problems

1. A bullet of mass m travelling with a speed v is shot into the rim of a
solid circular cylinder of radius R and mass M as shown in the figure.
The cylinder has a fixed horizontal axis of rotation, and is originally
at rest. Derive a formula for the angular speed of the cylinder after
the bullet has become imbedded in it. (Hint: The rotational inertia of
a solid cylinder about the center axis is I = 1

2MR2). [WS354-355]



Chapter 11

GRAVITATION

SUGGESTED HOME EXPERIMENT:
Design some observations so that you can detect the retrograde motion of a
planet. (Obviously you won’t be able to actually carry out these observations
this week. Why ?)

THEMES:
The Solar System.

153
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The study of gravitation has been one of the core areas of physics research
for the last 500 years. Indeed it was the study of gravity that revolutionized
much of our thinking of our place in the universe, for one of the key results
in the last 500 years was the realization that Earth is NOT the center of
the universe. This has had profound and dramatic consequences for all of
humankind. (I personally believe that an equally profound effect will take
place if extraterrestrial intelligent life is found.)

We shall approach our study of gravitation a little different from the
way Halliday discusses it. I wish to emphasize the historical approach to
the subject because it is interesting and helps us understand the physics
much better. A wonderful book that tells the whole story in nice detail is
by R. Kolb, ”Blind Watchers of the Sky” (Helix Books, Addison-Wesley,
New York, 1996). This would be great reading between semesters! Some of
the key historical figure are the following:

Claudius Ptolemy (l40 A.D.)
Nicolaus Copernicus (1473-1543)
Tycho Brahe (1546-1601)
Galileo Galilei (1564-1642)
Johannes Kepler (1571-1630)
Isaac Newton (1642-1727)
Albert Einstein (1879-1955)
I would now like to just briefly describe the contributions of each of these

figures. We shall elaborate on the mathematical details afterwards.
In the system of Ptolemy (l40 A.D.), the Earth was believed to be at

the center of the universe and the Sun, Moon, stars and planets all revolved
around the Earth, as seems to be indicated by simple observation. However,
upon closer inspection it can be seen that the planets (Greek word meaning
wanderer) actually do not move in smooth circles about the Earth but rather
do a kind of wandering motion. Actually they undergo a retrograde motion
with respect to an observer on Earth. This retrograde motion was very
puzzling to the ancients, and ran afoul of the idea that all heavenly bodies
moved in pure circles. In order to save the theoretical notion of pure circles
and yet to explain the observational fact of retrograde motion for the planets,
Ptolemy introduced the idea of epicycles. Figure 14.1 shows that instead
of a planet moving in a great circle about the Earth, as do the Sun and
Stars, Ptolemy’s idea was that another circle called an epicycle moves ina
great circle around the Earth and the planets move around on the epicycles.
This ’explains’ the observations of retrograde motion. But Ptolemy’s system
leaves unanswered the question of where the epicycle comes from. However
this system of epicylces enjoyed great success for over a thousand years.
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Earth

epicycle

FIGURE 14.1 Ptolemaic epicycle.

However later on came Copernicus (1473-1543), a Polish monk, who
suggested that the Earth is not at the center of the universe. From a psy-
chological point of view, this is probably the most important scientific idea
in history. Copernicus thought instead that the Sun was at the center of
the universe and that all the planets, including Earth, revolved around it.
This provided an alternative explanation for the retrograde motion of the
planets, for if the planets move at different speeds around the Sun, then
from the point of view of an observer on Earth, the planets will appear to
move forward and then backward depending upon the relative orientation.

Tycho Brahe (1546-1601) was one of the greates observational astronomers
in history. Of course the telescope had not yet been invented and all of Ty-
cho’s observations were with some geometric instruments and the naked eye.
He mounted an intensive campaign to accurately record the motion of all the
planets. After Tycho died, Johannes Kepler (1571-1630) obtained access to
Tycho’s precision data and was able to use it to figure out the exact motion
of the planets to a high degree of precision. In particular Kepler discovered
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that the motion of the planets was not the perfect circle after all, but rather
the motions were elliptical. From analyzing Tycho’s data Kepler discovered
3 important facts about the planets. These are usually called Kepler’s laws
of planetary motion. They are

1) All planets move in elliptical orbits with the Sun at one focus.
2) The line joining any planet to the Sun sweeps out equal areas in equal

times.
3) The period squared is proportional to the mean distance cubed, i.e.

T 2 ∝ R3. (The period T is the time it takes for a planet to complete one
orbit of the Sun. For Earth this is 365 days. The mean distance R is the
average distance from the Sun to the planet in question.)

Meanwhile, Galileo Galilei (1564-1642) used the newly invented telescope
to view the heavens for the first time. Among his many great discoveries,
were observations of the moons of Jupiter clearly showing orbits around the
planet itself. This was the first direct observation of bodies which did not
orbit Earth.

One important point to note about Kepler’s laws is that they were ’mere’
empirical facts. No one understood why they were true. In fact Kepler
spent the rest of his life trying to explain then. It was not until Isaac
Newton (1642-1727) invented a theory of gravity that Kepler’s laws were
finally understood on a theoretical basis. Newton had been thinking deeply
about what holds the moon in orbit around Earth and what holds the planets
in orbit around the Sun. The story goes that Newton was sitting under
an apple tree watching the apples fall off the tree onto the ground. It
suddenly occured to Newton that the force causing the apples to fall to the
ground is the same force that keeps the moon in orbit about Earth and the
planets in orbit about the Sun. What a great leap of imagination ! Newton
hypothesized that the gravitational force between any two objects was given
by an inverse square law of the form

F = G
m1m2

r2
(11.1)

where m1 and m2 are the masses of the bodies and r is the distance between
their centers. G is a constant. Note that this says that if the distance
between two bodies is doubled the force drops by a factor of 4. The great
triumph of Newton’s gravitational theory was that he could derive Kepler’s
laws. We shall go through this derivation in a moment.

The story of gravity is not complete without mentioning Einstein’s Gen-
eral Theory of Relativity which was another theory of gravity completely at
odds with Newton’s theory. In Einstein’s theory there is no mention of any
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forces at all. Rather, gravity is seen to be due to a curvature of space and
time. The concept of force is more of an illusion. Einstein’s theory was also
able to explain Kepler’s laws, but its advantage over Newton’e theory was
that it explained additional facts about the planets such as the precession
of the orbit of mercury and the deflection of starlight by the Sun.

Actually even today the story of gravity is not complete. In fact of the
4 forces that we have identified in nature (gravity, electromagnetism, strong
force, weak force), it is gravity that still remains poorly understood. The
theory of quantum mechanics was invented early this century to describe the
motion of tiny particles such as atoms. The great problem with gravity is
that no one has succeeded in making it consistent with quantum mechanics.
A recent theory, called Superstring theory, may be the answer but we will
have to wait and see. By the way, the physics department at the University
of Wisconsin-Milwaukee is one of the leading centers in the nation for the
modern study of gravity.
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11.1 The World and the Gravitational Force

Read.

11.2 Newton’s Law of Gravitation

We already know about Newton’s three laws of motion, the second of which
is
∑ ~F = m~a. These three laws describe motion in general. They never

refer to a specific force. Newton however did also study in detail a specific
force, namely gravity. He conjectured that the gravitational force between
two bodies of mass m1 and m2 whose centers are separated by a distance of
r has a magnitude of

F = −Gm1m2

r2

The minus sign tells us that the force points inwards. The value of G was
determined later in 1798 by Cavendish. It’s value measured today is

G = 6.67× 10−11Nm2 kg−2

However, it is interesting that today the gravitational constant is the least
accurately known of all the fundamental constants. For instance, its most
accurately known value is actually G = (6.67259±0.00085)×10−11 Nm2kg−2

[see Particle Properties Data Booklet, 1996] whereas for example the charge
of the electron is (1.60217733± 0.00000049)× 10−19 Coulomb or the speed
of light is 299 792 458 m sec−1 which are known much more accurately than
G. Another example is the strength of the electrical force, called the fine
structure constant, α−1 = 137.0359895± 0.0000061.

Note: Halliday (Pg. 323) writes F = Gm1m2
r2 (i.e. with a plus sign) but then

writes F = −Gm1m2
r2 on Pages 329 and 331. The equation should always be

written with a minus sign to indicate an atractive inwards force.
Now the vector form of Newton’s Law is

~F = −Gm1m2

r2
r̂

where r̂ is a unit vector point from one mass out to the other. The gravita-
tional force is an inward force and that’s why the minus sign appears.

11.3 Gravitation and Principle of Superposition

Read carefully.
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11.4 Gravitation Near Earth’s Surface

Newton’s formula F = Gm1m2
r2 is often called the law of Universal Gravita-

tion because it applies to all bodies in the universe. How does it fit in with
our concept of Weight which we defined to be the gravitational force at the
surface of the Earth, namely

W ≡ mg
where g = 9.8 m sec−1 is the acceleration due to gravity at the surface of the
Earth? Well, if F = Gm1m2

r2 is universal then it should predict the Weight
force. Let’s see how this comes about.

Example Show that F = Gm1m2
r2 gives the same result as

W = mg near the surface of Earth.

Solution Let m1 ≡ M be the mass of Earth, which is m1 =
M = 5.98 × 1024 kg. Let m2 ≡ m be the mass of a person of
weight W = mg. The distance between the centers of the masses
is just the radius of Earth, i.e. r = 6370 km (which is about 4000
miles, only slightly larger than the width of the United States or
Australia). Thus the gravitational force between the two masses
is

F = G
mM

r2

= 6.67× 10−11Nm2kg−2 × m× 5.98× 1024 kg
(6.37× 106m)2

= m× 9.8 m sec−2

which is the same as W = mg. In other words we have predicted
the value of g from the mass and radius of Earth. You could now
do the same for the other planets.
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Example Explain how to measure the mass of Earth.

Solution In the previous example, we found

g = G
M

r2

where M is the mass of Earth and r is the radius of Earth. Thus
by measuring g (which you do in the lab) and by measuring r
(which the ancient Greeks knew how to do by comparing the
depth of a shadow in a well at two different locations at the
same time) then M is given by

M =
gr2

G

and G was measured in the famous Cavendish experiment (look
this up).
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11.5 Gravitation Inside Earth

If you go down a deep mine shaft then there will be Earth below you and
Earth above you. It is interesting to figure out that the Earth above you
won’t have any overall gravitational effect. The easiest way to see this
is to suppose you were located exactly at the center of Earth. Then the
gravitational pull of all the Earth surrounding you above will all cancel out
and you will fee zero net force. Now consider Figure 14.2 where a person
is located at point P inside the Earth, at a distance r from the center of
Earth.

r

B

A

P

FIGURE 14.2 A person is located as point P inside the Earth, as a
distance r from the center of Earth.

I have drawn a dotted circle of radius r intersecting point P . We all
agree that the total mass located inside the dotted circle produces a net
gravitational force on the person. However the mass outside the dotted
circle produces no net gravitational force. This can be seen by considering
the shaded regions A and B. Region A contains a small amount of mass
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which will pull the person at P outwards. However the mass contained in
B will pull in the opposite direction. Now there is more mass in B, but it
is further away and so the gravitational effects of the mass in A and in B
cancel out. Thus we can ignore all of the mass located outside of the dotted
circle.

Example (See also Sample Problem 14-5): A hole is drilled from
the United States to China through the center of Earth. Ignoring
the rotation of Earth, show that a particle dropped into the hole
experiences a gravitational force like Hooke’s law, and therefore
will undergo oscillation in the hole.

Solution Newton’s law is ~F = −GMm
r2 r̂ where M is the mass

contained within the dotted circle (Figure 14.2) and r is the
radius of the dotted circle. Now when the particle falls through
the hole, M keeps getting smaller because r gets smaller as the
particle falls towards the center of Earth. The density of material
in Earth is

ρ =
Mass

Volume
=

M
4
3πr

3

giving

M =
4
3
πr3ρ

where ρ is constant. Thus

~F = −G
4
3πr

3ρm

r2
r̂

= −4πG
3

ρmrr̂

= −K~r

where K ≡ 4πG
3 ρm and ~r = rr̂. This is exactly Hooke’s law, i.e.

the same as for a spring. Thus the particle will oscillate.
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Example When you go down a mine shaft, do you weigh more
or less than you did at the surface of the Earth ?

Solution We found in the previous example that

~F = −4πG
3

ρmrr̂

Now ρ is constant and thus ~F is bigger when r is big. Thus when
r gets small, ~F gets small and your weight therefore decreases.
In fact F = W = mg = 4πG

3 ρmr giving g = 4πG
3 ρr indicating

that g gets smaller as r gets smaller.

11.6 Gravitational Potential Energy

Let’s briefly recall our ideas about work and energy. The total work was
defined as W ≡

∫
~F · d~r. By substituting ~F = m~a we found the work was

always equal to the change in kinetic energy, i.e.

W ≡
∫
~F · d~r = ∆K

The total work consisted of two parts namely, conservative WC and non-
conservative WNC . We defined potential energy U via

WC =
∫
~FC · d~r ≡ −∆U

giving
W = WC +WNC = −∆U +WNC = ∆K

or
∆U + ∆K = WNC

which we called the work-energy theorem. Now K is always given by K =
1
2mv

2 (which came from
∫
m~a · d~r = ∆K) but U is different for different

forces (because −∆U =
∫
~F · d~r).

For a spring force ~F = −kxî we found U = 1
2kx

2. For gravity near the
surface of Earth, ~F = −mgĵ we found U = mgy. For universal gravitation
~F = −Gm1m2

r2 r̂ we will find that the gravitational potential energy is

U = −Gm1m2

r



164 CHAPTER 11. GRAVITATION

Example For gravity near the surface of Earth, prove that
U = mgy.

Solution This was already done in Chapter 8 (these notes).
Let’s do it again.

WC ≡
∫
~FC · d~r ≡ −∆U

Now ~F = −mgĵ and d~r = dxî+ dyĵ + dzk̂. Thus

~F · d~r = −mg dy

giving

WC = −mg
∫ yf

yi

dy ≡ −∆U

= −mg(yf − yi) = −(Uf − Ui)
= −mgyf +mgyi = −Uf + Ui

giving

Uf = mgyf

Ui = mgyi

or just
U = mgy
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Example For universal gravitation, prove that U = −Gm1m2
r .

Solution

WC =
∫
~FC · d~r ≡ −∆U

~F = −Gm1m2

r2
r̂ and d~s ≡ d~r = r̂ dr

~F · d~r = −Gm1m2

r2
dr r̂ · r̂ = −Gm1m2

r2
dr

giving

WC = −Gm1m2

∫ rf

ri

1
r2
dr = −∆U

= −Gm1m2

[
−1
r

]rf
ri

= −(Uf − Ui)

= −Gm1m2

(
− 1
rf
−− 1

ri

)

= −Gm1m2

(
− 1
rf

+
1
ri

)
= +G

m1m2

rf
−Gm1m2

ri
= −Uf + Ui

giving

Uf = −Gm1m2

rf

Ui = −Gm1m2

ri

or just
U = −Gm1m2

r
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Recall that we also had an alternative way of finding U without having
to work out the integral

∫
~FC ·d~r. We had WC =

∫
~FC ·d~r ≡ −∆U . Ignoring

the vectors we write ∫
FCdr = −∆U

meaning that we must have

FC = −dU
dr

This occurs because∫ f

i
FCdr = −

∫ f

i

dU

dr
dr = −

∫ Uf

Ui

dU = −[U ]UfUi

= −(Uf − Ui) = −∆U

Example For universal gravitation F = −Gm1m2
r2 , derive U

without doing an integral.

Solution For universal gravitation, the question is what U will
give

F = −Gm1m2

r2
= −dU

dr

The answer is U = −Gm1m2
r2 . Let’s check:

−dU
dr

= +Gm1m2
d

dr

(
1
r2

)
= −Gm1m2

r

which is the F we started with!
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Escape Speed

If you throw a ball up in the air it always comes back down. If you throw
it faster it goes higher before returning. There is a speed, called the escape
speed, such that the ball will not return at all. Let’s find out what this is.

Example Calculate the speed with which a ball must be thrown,
so that it never returns to the ground.

Solution The ball usually returns to the ground because of its
gravitational potential energy U = −Gm1m2

r . However if we can
throw the ball to an infinite distance, r =∞, then U will be zero
and the ball will not return. We want to throw the ball so that
it just barely escapes to infinity, that is its speed, when it gets
to infinity, has dropped off to zero. Using conservation of energy
we have

Ki + Ui = Kf + Uf

or
1
2
mv2

i −G
Mm

R
= O +O

where M is the mass of Earth, m is the mass of the ball and R is
the radius of Earth, because we throw the ball from the surface
of Earth. vi is the escape speed that we are looking for. Thus

1
2
mv2

i = G
Mm

R

and m cancels out giving

vi =

√
2GM
R

for the escape speed. Now the mass and radius of Earth are
M = 6× 1024 kg and R = 6370 km, giving

vi =

√
2× 6.67× 10−11Nm2kg−2 × 6× 1024kg

6.37× 106m
= 40, 353 km hour−1

≈ 25, 000 miles per hour
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Now you can see that if M is very large or R is very small then the
escape speed gets very big. The speed of light is c = 3 × 108 m/sec. You
can imagine an object so massive or so small that the escape speed is bigger
than the speed of light. Then light itself cannot escape. Such an object is
called a Black Hole.

Example To what size would we need to squeeze Earth to turn
it into a Black Hole ?

Solution Let’s set the escape speed equal to the speed of light
c = 3× 108 m/sec. Thus

c =

√
2GM
R

c2 =
2GM
R

giving

R =
2GM
c2

=
2× 6.67× 10−11Nm2kg−2 × 6× 1024kg

(3× 108m sec−1)2

= 4.4 mm

(where M = mass of Earth = 6 × 1024 kg). Thus if we could
squeeze the Earth to only 4 mm it would be a black hole!
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Example The size of the universe is about 10 billion light years
and its total mass is about 1053 kg. Calculate the escape speed
for the universe.

Solution A light year is the distance that light travels in one
year. Thus

light year = c× 1 year

= 3× 108 m
sec
× 365× 24× 60× 60 sec

= 1016m

Thus

v =

√
2GM
r

=

√
2× 6.67× 10−11Nm2kg−2 × 10kg

10× 109 × 1016 m
= 3.7× 108 m/sec
= 1.2c

which is 1.2 times the speed of light. Thus is our universe really
a black hole? Do we actually live inside a black hole?
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11.7 Kepler’s Laws

Let’s now use Newton’s law of gravitation to prove some of Kepler’s laws of
planetary motion.

Kepler’s first law is that the planets move in elliptical orbits with the
Sun at one focus. This is somewhat difficult to prove and we will leave it to
a more advanced physics course. A picture is shown in Figure 14.3 with the
Sun at the focus of an ellipse.

Sun

Planet
∆ t

∆ t

FIGURE 14.3 Planets sweep out equal areas in equal times.

Kepler’s second law states that the line joining a planet to the Sun sweeps
out equal areas in equal times. This is shown in Fig. 14.3. In the upper
part of the figure there are two shaded regions with the same area. The
planet takes the same time ∆t to sweep out this area. Thus the planets
move quickly when close to the Sun and move slowly when farther away.
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Example Prove that Kepler’s second law can be derived from
Newton’s law of universal gravitation.

Solution Figure 14.4 shows the radius vector ~r and the displace-
ment ~v dt for the planet of mass m.

Sun
mr

v dt

FIGURE 14.4 Area swept out by planet.

The shaded portion is the area swept out and has the shape of
a triangle of area

dA =
1
2
r v dt

The rate of change of area is

dA

dt
=

1
2
r v =

1
2m

mr v =
l

2m

where l is the angular momentum of the planet. But angular
momentum is constant, therefore

dA

dt
= constant

meaning that equal areas are swept out in equal times!
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Kepler’s third law is that the period squared is proportional to the aver-
age distance cubed (T 2 ∝ r3) for a planetary orbit. This is difficult to prove
for elliptical orbits, which is done in a more advanced physics course. We
will prove it for a circular orbit only.

Actually the essenticity of the elliptical orbits are typically very small.
In other words the elliptical orbits are very close to circular orbits with
the Sun at the center. We shall prove Kepler’s other two laws with the
assumption that the orbits are circles. Thus we immediately know that the
right hand side of F = ma is mv2

r because all uniform circular motion has
the centripetal acceleration given by a = v2

r .

Example Prove that Kepler’s third law can be derived from
Newton’s law of universal gravitation. (Assume circular orbits
only)

Solution F = ma
gives

G
Mm

r2
= m

v2

r

Now the period T is the time to complete one orbit. Thus

v =
2πr
T

or

G
M

r2
=

1
r

4π2r2

T 2
=

4π2r

T 2

giving

T 2 =
4π2

GM
r3

or
T 2 ∝ r3
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Example The distance between Earth and the Sun is about 93
million miles and can easily be determined using parallax and
trigonometry. How can the mass of the Sun be subsequently de-
termined ?

Solution Kepler’s law is T 2 = 4π2

GM r
3 giving

M =
4π2

G

r3

T 2

Now r = 93,000,000 miles = 150,000,000 km and the period of
Earth is 1 year or

T = 365× 24× 60× 60 sec

Thus the mass of the Sun is

M =
4π2

6.67× 10−11 Nm2kg−2 ×
(150, 000, 000× 103 m)3

365× 24× 60× 60 sec)2

= 2× 1030 kg

Notice that the mass of Earth did not enter. Thus if we observe
two bodies in orbit and know the distance between them we
can get the mass of the other body. this is how astronomers
determine the mass of double star systems. (More than half of
the stars in the sky are actually double stars.)
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11.8 Problems



Chapter 12

OSCILLATIONS

SUGGESTED HOME EXPERIMENT:
Measure g from the period of a pendulum.

THEMES:
Clocks.

175
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12.1 Oscillations

Much of the motion that we have considered, such as motion of a car in
a straight line or projectile motion, has started and then finished, i.e. it
does not repeat. However a great deal of motion in nature is repetitive
or oscillatory, such as a satellite undergoing circular motion, or an object
suspended on a spring or a buoy bobbing up and down in the water. We
would now like to study oscillations in detail. This will later lead to the
study of wave motion which is also oscillatory in nature.

Oscillations are of great technological importance, especially in regard
to time keeping.

(Note: Mechanical Universe tapes very good – especially discussion of clocks
and navigation.)

12.2 Simple Harmonic Motion

An important property of oscillatory motion is the frequency f which is the
number of oscillations completed each second. The units are sec−1 or Hertz,
often abbreviated as Hz. Thus

1 Hertz = 1 Hz = 1 oscillation per second
= 1 sec−1.

Another related quantity is the period T which is the time taken to
complete 1 full oscillation. Now

f =
number of oscillations

time

and if the time is simply T then 1 oscillation is completed. Thus

f =
1
T

In circular motion, which is a type of oscillatory motion, we introduced the
angular speed ω defined as

ω =
∆θ
∆t

Clearly if ∆θ = 2π then ∆t = T giving ω = 2π
T . Thus angular velocity and

frequency are related by
ω = 2πf
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In oscillations ω is often called angular frequency.
Any motion that repeats itself at regular intevals is called oscillatory

motion or harmonic motion. Now of all the mathematical functions that you
have ever come across, there is one famous function that displays oscillations
and that is cos θ, which is plotted in Figure 16.1.

0 5 10 15 20
x

-1

-0.5

0

0.5

1

C
os

x

FIGURE 16.1 Plot of cos θ.

Thus the displacement x for oscillatory motion can be written

x = xm cos θ

but ω = θ
t , giving

x = xm cosωt

We can also introduce a phase angle φ if we want and instead write

x = xm cos(ωt+ φ)

This is discussed on Pg. 374 of Halliday. Here xm refers to the maximum
value of the displacement x. And xm is often called the amplitude of the
motion.

LECTURE DEMONSTRATION: Spring and Pendulum

Any motion that obeys the above equation x = xm cosωt is called Simple
Harmonic Motion (SHM).

The velocity of SHM is easy to figure out. First recall that if y = cos kx
then dy

dx = −k sin kx. Now the velocity is

v =
dx

dt
= −ωxm sinωt
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Also recall if y = sin kx when dy
dx = k cos kx. Now the acceleration is

a =
dv

dt
= −ω2xm cosωt

from which it follows that
a = −ω2x

In Figure 16-4 of Haliday, there is a plot of x, v, a. Notice that when x and
a are at a maximum, then v is a minimum and vice-versa.

LECTURE DEMONSTRATION: Show this for Spring

12.3 Force Law for SHM

Now consider Newton’s law for a Spring where the force is given by F = −kx
(Hooke’s law), where k is called the spring constant. Substituting into

F = ma

−kx = ma

but we found that a = −ω2x giving

−kx = −mω2x

or

ω =
√

k
m

which is the angular frequency for an oscillating spring. The period is ob-
tained from ω = 2πf = 2π

T or

T = 2π
√

m
k

Notice an amazing thing. The period does not depend on the amplitude of
oscillation xm! When a spring is oscillating, the oscillations tend to die
down in amplitude xm but the period of oscillation remains the same! This
is crucial to the operation of clocks. I can “wind” my spring clock by just
pulling on it a bit and still the period is the same.
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LECTURE DEMONSTRATION: Show this for Spring and Pendulum. Also
show T ∝ √m and T ∝ 1√

k
.

Navigation and Clocks

NNN - FIX For a pendulum, this independence of the period on the
amplitude was first noticed by Galileo and led to the development of clocks
which was very important for navigation. The reason was that it enabled one
to determine longitude on Earth. (Latitude was easy to determine just by
measuring the height of the Sun in the sky at noon.) By dragging knotted
ropes behind a ship it was easy to measure the speed of a ship. If one
knew how long one had been travelling (i.e. measure the time of travel, say
with a pendulum or spring clock) then one knew the distance from the port
from which one had set sail. Knowing longitude and latitude gives one’s
position on the Earth. Thus the invention of accurate clocks (based on
the independence of period and amplitude) enabled accurate estimates of
longitude and thus revolutionized navigation.
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Example F = ma is really a differential equation, that is an
equation involving derivatives. For the spring, it becomes −kx =
ma = mẍ where ẍ = d2x

dt2
. Thus the differential equation is

mẍ+ kx = 0

In mathematics there are special techniques for solving differ-
ential equations, which you will learn about in a special differ-
ential equations course. Using these special techniques one can
prove that x = xm cosωt is a solution to the above differen-
tial equation. (Just like the solution to the algebraic equation
x2 − 5 = 4 is x = ±3. We verify this solution by sustituting,
(±3)2− 5 = 9− 5 = 4). Many students will not have yet learned
how to solve differential equations, but we can verify that the
solution given is correct.

Verify that x = xm cosωt is a solution to the differential equa-
tion mẍ+ kx = 0.

Solution

x = xm cosωt

ẋ =
dx

dt
= −ωxm sinωt

ẍ =
dẋ

dt
=
d2x

dt2
= −ω2xm cosωt

Substitute into
mẍ+ kx = 0

giving
−mω2xm cosωt+ kxm cosωt = 0

or
−mω2 + k = 0

Thus if

ω =

√
k

m

then x = xm cosωt is a solution.
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Example When a mass is suspended from the end of a massless
spring, the spring stretches by a distance x. If the spring and
mass are then put into oscillation, what is the period ?

Solution We saw that the period is given by T = 2π
√

m
k . We

don’t know m or k ! We can get k from Hooke’s law F = −kx.
The weight W = mg stretches the spring, thus mg = kx or
k = mg

x . Thus

T = 2π
√
mx

mg

and fortunately m cancels out giving

T = 2π
√
x

g

12.4 Energy in SHM

We found before that the potential energy stored in a spring is U = 1
2kx

2

and the kinetic energy is K = 1
2mv

2. The conservation of mechanical energy
says that

Ei = Ef

where the total energy is
E ≡ K + U

That is
Ki + Ui = Kf + Uf

Thus E is constant. However for a spring x and v are always changing. Can
we be sure that E is always constant ?
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Example For SHM, show that the total energy is always con-
stant even though K and U always change.

Solution Recall that for SHM we have x = xm cosωt and
v = −ωxm sinωt. Thus

U =
1
2
kx2 =

1
2
kx2

m cos2 ωt

and

K =
1
2
mv2 =

1
2
mω2x2

m sin2 ωt.

Thus U and K always change. Let’s add them.

E = K + U

=
1
2
mω2x2

m sin2 ωt+
1
2
kx2

m cos2 ωt

but we previously found that ω =
√

k
m giving

E =
1
2
m
k

m
x2
m sin2 ωt+

1
2
kx2

m cos2 ωt

=
1
2
kx2

m(sin2 ωt+ cos2 ωt)

E =
1
2
kx2

m

which is always constant because the amplitude xm is constant!

12.5 An Angular Simple Harmonic Oscillator

leave out
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12.6 Pendulum

The Simple Pendulum

A pendulum is a very important type of oscillating motion and a very
important clock (e.g. “Grandfather Clock”). The forces on a pendulum are
shown in Fig. 16-10 of Halliday. Let’s analyze the forces and show that the
period is independent of amplitude.

Example Prove that the period of a pendulum undergoing small

oscillations is given by T = 2π
√

L
g where L is the length of the

pendulum.

Solution From Figure 16-10 (Halliday) we have∑
Fk = max

where we take the x direction to be perpendicular to the string.
Thus

−mg sin θ = mαL

where α is the angular acceleration α = d2θ
dt2

. Now for small
oscillations, sin θ ≈ θ, so that

−gθ = m
d2θ

dt2
L

Now compare this to our spring equation which was

−kx = ma

−kx = m
d2x

dt2

which had period T = 2π
√

m
k . Thus for the pendulum we must

have

T = 2π

√
L

g

LECTURE DEMONSTRATION: Show T ∝
√
L
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Example A Physical Pendulum consists of a solid piece of mat-
ter undergoing oscillations as shown in Fig. 16.11 (Halliday).
Prove that the period of oscillation is T = 2π

√
I

mg h , where I is
the rotational inertia, m is the total mass and h is the distance
from the rotation axis to the center of mass. (See Haliday, Pg.
382) Assume small oscillations.

Solution The torque is

τ = −(mg sin θ)h

where the minus sign indicates that when θ increases the torque
acts in the opposite direction. For small oscillations sin θ ≈ θ
giving

τ ≈ −mgθh
Substitute into Newton’s second law∑

τ = Iα

gives

−mgθh = Iθ̈

= I
d2θ

dt2

Now compare this to our spring equation which was

−kx = ma

−kx = m
d2x

dt2

which had period T = 2π
√

m
k . Thus for the physical pendulum

we must have

T = 2π

√
I

mgh
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m

m

m

k1

1k

k1

k 2

k2

k 2

(a)

(b)

(c)

FIGURE 16.2 Block sliding on frictionless surface with various spring
combinations.
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Example Two springs, with spring constants k1 and k2, are con-
nected in parallel to a mass m sliding on a frictionless surface,
as shown in Fig. 16.2a. What is the effective spring constant
K? (i.e. If the two springs were replaced by a single spring with
constant K, what is K in terms of k1 and k2?) Assume both
springs have zero mass.

Solution If m moves by an amount x then it feels two forces
−k1x and −k2x, giving ∑

F = ma

−k1x− k2x = mẍ

−(k1 + k2)x = mẍ

giving
K = k1 + k2
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Example The two springs of the previous example are connected
in series, as shown in Fig. 16.2b. What is the effective spring
constant K ?

Solution If spring 1 moves a distance x1 and spring 2 moves a
distance x2 then the mass moves a distance x1 + x2. The force
the mass feels is

F = −K(x1 + x2)

Now consider the motion of the mass plus spring 2 system. The
force it feels is

f = −k1x1

but we must have F = f because ma is same for mass m and
mass plus spring 2 system because spring 2 has zero mass. Thus

K =
k1x1

x1 + x2

but
k1x1 = k2x2

(the ratio of stretching x1
x2

= k2
k1

is inversely proportional to spring
strength.) Thus K = k1x1

x1+
k1
k2
x1

giving

K =
k1k2

k1 + k2

or
1
K

=
1
k1

+
1
k2
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Example The two springs of the previous example are connected
as shown in Fig.16.2c. What is the effective spring constant K ?

Solution If spring 1 is compressed by x then spring 2 is stretched
by −x. Thus ∑

F = ma

−k1x+ k2(−x) = mẍ

−(k1 + k2)x = mẍ

giving
K = k1 + k2
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12.7 Problems

1. An object of mass m oscillates on the end of a spring with spring con-
stant k. Derive a formula for the time it takes the spring to stretch from
its equilibrium position to the point of maximum extension. Check
that your answer has the correct units.

2. An object of mass m oscillates at the end of a spring with spring
constant k and amplitude A. Derive a formula for the speed of the
object when it is at a distance d from the equilibrium position. Check
that your answer has the correct units.

3. A block of mass m is connected to a spring with spring constant k,
and oscillates on a horizontal, frictionless surface. The other end of the
spring is fixed to a wall. If the amplitude of oscillation is A, derive a
formula for the speed of the block as a function of x, the displacement
from equilibrium. (Assume the mass of the spring is negligible.)

4. A particle that hangs from a spring oscillates with an angular fre-
quency ω. The spring-particle system is suspended from the ceiling of
an elevator car and hangs motionless (relative to the elevator car), as
the car descends at a constant speed v. The car then stops suddenly.
Derive a formula for the amplitude with which the particle oscillates.
(Assume the mass of the spring is negligible.) [Serway, 5th ed., pg.
415, Problem 14]

5. A large block, with a second block sitting on top, is connected to a
spring and executes horizontal simple harmonic motion as it slides
across a frictionless surface with an angular frequency ω. The coeffi-
cient of static friction between the two blocks is µs. Derive a formula
for the maximum amplitude of oscillation that the system can have if
the upper block is not to slip. (Assume that the mass of the spring is
negligible.) [Serway, 5th ed., pg. 418, Problem 54]

6. A simple pendulum consists of a ball of mass M hanging from a uni-
form string of mass m, with m¿M (m is much smaller than M). If
the period of oscillation for the pendulum is T , derive a formula for
the speed of a transverse wave in the string when the pendulum hangs
at rest. [Serway, 5th ed., pg. 513, Problem 16]
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Chapter 13

WAVES - I

SUGGESTED HOME EXPERIMENT:
Pluck some strings and verify the frequency equation for strings.

THEMES:
Violin and Guitar.

191
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So far we have studied the motion of single particles and systems of
particles. However the motion of waves requires a different type of approach,
although we will use extensively some of our results from harmonic motion.

Waves are an important phenomenon in nature. There are water waves,
sound waves by which we hear, light waves by which we see, and radio waves
by which we communicate. Thus in today’s modern society it is important
to understand wave motion.

13.1 Waves and Particles

Read.

13.2 Types of Waves

Read.

13.3 Transverse and Longitudinal Waves

There are two different types of waves. Transverse waves are the ones you
are most familiar with, such as water waves or waves on a string. Transverse
waves have the property that the wave displacement is perpendicular to the
velocity of the wave, as shown in Fig. 17-1 (Halliday). Sound waves are an
example of longitudinal waves in which the wave displacement is parallel to
the wave velocity, as shown in Fig. 17-2 (Halliday). When you hear a sound
wave, the wave travels to your ear and vibrates your ear drum in the same
direction as travel.

LECTURE DEMONSTRATION: Slinky showing tranverse and longitudinal
waves.
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13.4 Wavelength and Frequency

There are 3 important variables for a wave, namely, i) the height y of the
wave, ii) the distance x that the wave travels and iii) the time t that the
wave travels. When visualizing a wave we usually think of a y − x plot or a
y − t plot as shown in Fig. 17-4 (Halliday).

The y − x plot represents an instant of time t and is similar to a pho-
tograph or snapshot of a water wave that we would take at the beach. The
distance between wave crests (that we could measure from our snapshot) is
called the wavelength λ.

The y − t plot represents a single location x and is similar to a movie of
a buoy bobbing up and down in the water as a wave passes through. The
buoy is anchored to the ocean floor at a fixed distance x. The time it takes
the buoy to bob up and down once is called the period T of the wave.

Thus, to summarize, λ is determined from the y − x graph (instant of
time t) whereas T is determined from the y − t graph (fixed distance x).
Carefully study Fig. 17-4 (Halliday). Thus y is a function of both x and t,
written as y(x, t). Now the y − x graph can be written

y(x, 0) = ym sin kx

where we have taken the instant of time to be t = 0. The reason we have
written sin kx and not just sinx is because the domain of the sine function
is an angle. We can only ever have sin θ where θ is an angle. Thus we cannot
write sinx because x is not an angle. Actually x is a distance with units of
m. However we want to use x as a plotting variable. To do this we have to
multiply it by something called k, so that the quantity kx is an angle, i.e.
θ ≡ kx. Now what is k? Well if kx is an angle then after one complete wave
cycle, the angle kx must be 2π. Now after one complete cycle the distance
the wave moves is x = λ. Thus we must have

θ = kx

or
2π = kλ

giving

k =
λ

2π

which is called the wave number. Similarly, the y − t graph can be written

y(0, t) = ym sinωt
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where we have taken the fixed distance to be x = 0. We did not write sin t
because t is not an angle, whereas ωt is an angle. ω is the angular speed
that we have discussed before. Again after one complete wave cycle ωt must
be 2π and after one cycle the time t will just be one period T . Thus we
must have

θ = ωt

or
2π = ωT

giving

ω =
2π
T

= 2πf

which is often called the angular frequency ω. We previously defined f ≡ 1
T

in Chapter 16. A general wave can be written

y(x, t) = ym sin(kx+ ωt)

Does this agree with what we had before? Yes. We can see that
y(x, 0) = ym sin kx and y(0, t) = ym sinωt.

13.5 Speed of a Travelling Wave

A handy formula for wave speed is easy to get! In one complete cycle the
wave travels a distance x = λ and takes a time t = T to do it. Thus the
wave speed must be

v =
distance

time
=
x

t
=
λ

T

Simple algebra also gives

v =
λ

T
= fλ =

ω

k
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Example What is the amplitude, wavelength, frequency and
speed of the wave described by

y(x, t) = 5 sin(3x+ 2t)

with all quantities in SI units (i.e. 5 m, 3 m−1 and 2 sec−1).

Solution The general wave is

y(x, t) = ym sin(kx+ ωt)

Thus the amplitude is

ym = 5 m

the wave number is

k = 3 m−1

and angular frequency is

ω = 2 sec−1

Now k = 2π
k = 3 m−1 giving

λ =
2π
k

=
2π

3 m−1
= 2.1 m

and ω = 2πf = 2 sec−1 giving

f =
ω

2π
=

2 sec−1

2π
= 0.32 sec−1

and the speed is

v = fλ = 0.32 sec−1 × 2.1 m = 0.67 m/sec
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13.6 Wave Speed on a String

LECTURE DEMONSTRATION: Wave speed depends on tension.

When a wave travels on a string, the wave speed depends on both the
string tension τ and the mass per unit length µ, or linear mass density.
What must the exact formula be? (τ is now tension, not torque) Well the
units of v are m sec−1 and units of τ are N ≡ kg m sec−1 and units of µ are
kg m−1. To get m sec−1 from kg m sec−2 and kg m−1 can only be obtained
with

m sec−1 =

√
kg m sec−2

kg m−1

=
√

m2sec−2 = m sec−1

Thus we must have
v =

√
τ
µ

And we can combine with our previous formula, so that the wave speed on
a string is v = fλ =

√
τ
µ .

13.7 Energy and Power of a Travelling String Wave

Leave out.

13.8 Principle of Superposition

Read carefully.

13.9 Interference of Waves

Read carefully.

LECTURE DEMONSTRATION: Show wave interference using slinky.

13.10 Phasors

Leave out.
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13.11 Standing Waves

Read carefully.

13.12 Standing Waves and Resonance

When waves travel down a string they can reflect back from the other end
and interfere with the other waves.

LECTURE DEMONSTRATION: Standing waves on slinky.

In this way standing waves of different wavelength can be produced. The
wave of lowest frequency (longest wavelength) is called the fundamental
harmonic. Higher frequencies are called higher harmonics. The various
allowed harmonics are shown in Fig. 17-18 (Haliday). The relations between
the wavelength λ and the length of the string L for the various harmonics
are

L =
λ

2

L = λ =
2λ
2

L =
3λ
2

etc. These can be written in general as

L = n
λ

2
with n = 1, 2, 3, · · ·

Now the wave speed is v = fλ =
√

τ
µ and writing λ = 2L

n gives f 2L
n =

√
τ
µ

or
f = n

2L

√
τ
µ

This is an extremely important formula for the design of muscial instru-
ments.

LECTURE DEMONSTRATION: Show how frequency of Sound from Violin
depends on length L, tension τ and mass density µ, thus verifying the above
formula.
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Example Middle C has a frequency of 262 Hz. What tension
do we need to apply to a violin string to get this frequency for
the fundamental harmonic? (Assume the string has a mass of
about 10 gram and a length of 1/4 m.)

Solution The mass per unit length µ is

µ =
10 gram
1/4 m

=
0.01 kg
.25 m

= 0.04 kg m−1

The frequency is given by f = n
2L

√
τ
µ . The fundamental har-

monic corresponds to n = 1, giving

τ = µ(2Lf)2

= 0.04 kg m−1 (2× 0.25 m ×262 sec−1)2

= 686 kg m−1m2sec−2

= 686 kg m sec−2

= 686 N
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13.13 Problems
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Chapter 14

WAVES - II

SUGGESTED HOME EXPERIMENT:
Blow in some pipes and verify the frequency equation for pipes.

THEMES:
Flute and Recorder.

201
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14.1 Sound Waves

This chapter is mostly devoted to the study of sound waves, although much
of what we have to say can also be applied to light waves. By the way, sound
waves are longitudinal whereas light waves are transverse.

14.2 Speed of Sound

The speed of sound in any medium is given by

v =

√
B

ρ

where ρ is the density of the medium and B is the Bulk Modulus defined as

B ≡ − ∆p
∆V/V

where a change in pressure ∆p causes a change in the volume ∆V of a
medium. Students should read Halliday (Pg. 426-427) for a careful discus-
sion of these concepts.

In air the speed of sound is

343 m/sec = 1125 ft/sec = 767 mph

The speed of sound was exceeded in an airplane many years ago. However
the sound barrier was broken by an automobile only for the first time in
October 1997!

14.3 Travelling Sound Waves

Leave out.

14.4 Interference

Read carefully.

14.5 Intensity and Sound Level

Read Halliday carefully. Understand the formula for sound level

β ≡ 10dB log
I

Io
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14.6 Sources of Musical Sound

All students should carefully read Pg. 435-436 Halliday. There it is ex-
plained how standing sound waves occur in pipes filled with air. See Fig.
18-14 (Halliday). The various maxima and minima locations of the standing
waves correspond to maximum and minimum pressures in the pipe as shown
in Fig. 18-13 (Halliday).

LECTURE DEMONSTRATION: Standing Sound Waves & Water Column

Example For a pipe open at both ends, determine the relation-
ship between the length of the pipe L and the frequencies of the
various harmonics.

Solution The pipe open at both ends is shown in Figs. 18-13,
18-14a (Halliday). There is a pressure node at the closed end
and an anitnode at the open end. The relations between the
wavelength λ and the pipe length L for the various harmonics
is Note the first harmonic is actually Fig. 18-13 (Halliday) and
the higher harmonics are in Fig. 18-14a

L =
λ

2
=

1
2
λ

L = λ =
2
2
λ

L =
3
2
λ

L = 2λ =
4
2
λ

etc. These can be written in general as

L =
nλ

2
with n = 1, 2, 3 · · ·
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Example Repeat the previous example for a pipe open at only
one end.

Solution This is shown in Fig. 18-14b (Halliday). Obviously

L =
λ

4
=

1λ
4

L =
3λ
4

L =
5λ
4

etc. These can be written in general as

L =
nλ

4
with n = 1, 3, 5 · · ·

Now recall that v = fλ =
√

B
ρ . Thus for the pipe open at both ends

f =
n

2L

√
B

ρ
with n = 1, 2, 3, · · ·

and for the pipe open at one end,

f =
n

4L

√
B

ρ
with n = 1, 3, 5, · · ·

These are very important formulas for the design of wind musical instru-
ments, such as a flute or recorder.

Note that a longer instrument (larger L) will give a lower frequency.

LECTURE DEMONSTRATION: Two recorders.

Also note that the frequency depends on the density of air.

LECTURE DEMONSTRATION: Talking with Helium gas.

14.7 Beats

Read carefully.
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14.8 Doppler Effect

Everyone has noticed the pitch of the sound of a train varies when the
train passes. You can also easily hear this just listening to cars drive down
the road. This change in frequency of a moving sound source is called the
Doppler effect.

LECTURE DEMONSTRATION: Moving Microphone (twirl on a string)

The same Doppler effect is also observed when the listener is moving and
the source is stationary.

We have previously seen that for a stationary observer and source, then

f =
v

λ

where v is the wave speed and λ is the wavelength.

Example An observer moves toward a stationary source of sound
waves at a speed vD (detector speed). Derive a formula for the
observed frequency f ′ in terms of the stationary frequency f .

Solution This situation is shown in Fig. 18-18 (Halliday). The
detector will sense a higher frequency as in

f ′ =
v + vD
λ

Now
f ′

f
=

v+vD
λ
v
λ

=
v + vD
v

or
f ′ = f

v + vD
v

Note: if the observer was moving away, the result would be

f ′ = f
v − vD
v
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Example A sound wave moves toward a stationary observer at
a speed vs. Derive a formula for the observed frequency f ′ in
terms of the stationary frequency f .

Solution This situation is shown in Fig. 18-21 (Halliday). This
time it is the wavelength which changes and it will be smaller as
in

λ′ = λ− vs
f

f ′ is now (due to change in λ′)

f ′ =
v

λ′

=
v

λ− vs
f

=
vf

λf − vs

=
vf

v − vs
or

f ′ = f
v

v − vs
Note: if the source was smoving away, the result would be

f ′ = f
v

v + vs

All of the previous results can be combined into a single formula,

f ′ = f
v ± vD
v ∓ vs

If vs = 0 we get f ′ = f v±vDv as before and if vD = 0 we get f ′ = f v
v∓vs as

before. An easy way to remember the signs is that if detector and source
are moving toward each other the frequency increases. If they are moving
away from each other the frequencydecreases.
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The Austrian physicist, Johann Christian Doppler proposed the effect in
1842. In 1845 it was tested experimentally by Buys Ballot using a locomotive
drawing an open train car with trumpeters playing.

Example Middle C has a frequency of 264 Hz. The D note has
a fequency of 300 Hz. If a trumpeter is playing the C note on
a train, how fast would the train need to travel for a stationary
person (with perfect pitch) on the ground to hear a D note ?

Solution Here vD = 0 and we want to find vs. The frequency
increases and we have

f ′ = f
v

v − vs
⇒ 1

f ′
=

v − vs
fv

⇒ v − vs =
fv

f ′

⇒ vs = v(1− f

f ′
)

= 767 mph (1− 264Hz
300Hz

)

= 92 mph
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14.9 Problems

1. A uniform rope of mass m and length L is suspended vertically. Derive
a formula for the time it takes a transverse wave pulse to travel the
length of the rope.

(Hint: First find an expression for the wave speed at any point a
distance x from the lower end by considering the tension in the rope
as resulting from the weight of the segment below that point.) [Serway,
5th ed., p. 517, Problem 59]

2. A uniform cord has a mass m and a length L. The cord passes over
a pulley and supports an object of mass M as shown in the figure.
Derive a formula for the speed of a wave pulse travelling along the
cord. [Serway, 5 ed., p. 501]

M

x

L - x

3. A block of mass M , supported by a string, rests on an incline making
an angle θ with the horizontal. The string’s length is L and its mass
is m¿M (i.e. m is negligible compared to M). Derive a formula for
the time it takes a transverse wave to travel from one end of the string
to the other. [Serway, 5th ed., p. 516, Problem 53]
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 L

θ

M

4. A stationary train emits a whistle at a frequency f . The whistle
sounds higher or lower in pitch depending on whether the moving
train is approaching or receding. Derive a formula for the difference in
frequency ∆f , between the approaching and receding train whistle in
terms of u, the speed of the train, and v, the speed of sound. [Serway,
5th ed., p. 541, Problem 54]
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Chapter 15

TEMPERATURE, HEAT &
1ST LAW OF
THERMODYNAMICS

SUGGESTED HOME EXPERIMENT:
Put a block of ice into an insulated container of water and measure the
temperature change. Is it what you expect ?

THEMES:
Heating and Cooling.

211
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15.1 Thermodynamics

We now leave our study of mechanics and begin our study of thermody-
namics. The most important system that we will study is an ideal gas and
how the temperature, pressure and volume are related. (Actually, however,
thermodynamic quantities are related to our study of mechanics. This is
the study of the kinetic theory of gases, i.e. a microscopic approach to ther-
modynamics.)

One of the most important properties of a macroscopic system, such as
a liquid or gas is the temperature, or thermal energy.

15.2 Zeroth Law of Thermodynamics

If two bodies have the same temperature then they are said to be in thermal
equilibrium. Thus the zeroth law of thermodynamics simply states that:

“If two bodies are in thermal equilibrium with a third body, then they are
in thermal equilibrium with each other.”

15.3 Measuring Temperature

Read.

15.4 Celsius, Farenheit and Kelvin Temperature
Scales

The antiquated Farenheit temperature scale is only still used in a few coun-
tries (including the United States). Water freezes at 32◦F and boils at 212◦F.
A much more natural temperature scale, called Celsius or Centigrade, rates
the freezing and boiling point of water at 0◦C and 100◦C respectively. To
convert between the two scales use

F =
9
5
C + 32

where F is the temperature in Farenheit and C is the temperature in Centi-
grade.
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Example If you set your house thermostate to 70◦F what is the
temperature in Centigrade ?

Solution

F =
9
5
C + 32

F − 32 =
9
5
C

C =
5
9

(F − 32)

=
5
9

(70− 32)

= 23◦C

Example At what temperature are the Farenheit and Centi-
grade scales equal ?

Solution When they are equal the F = C = x giving

x =
9
5
x+ 32

x

(
1− 9

5

)
= 32

−4
5
x = 32

x = −40◦

i.e.
−40◦F = −40◦C
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From a microscopic point of view (see Chapter 20), the temperature of a
substance is related to the speed of the individual molecules which also give
rise to pressure. Thus a gas which has fast moving molecules will have a
high temperature and pressure. What happens if we slow all the molecules
to zero speed? Well then the gas pressure will be zero. The temperature at
which this happens is −273.15◦C.

LECTURE DEMONSTRATION: Show this.

This leads to a third type of tmperature scale called Absolute temperature
or Kelvin temperature. The Kelvin temperature at which a gas has zero
pressure is defined to be 0◦K. Thus

C = K − 273.15

where C is the temperature in Centigrade and K is the temperature in
Kelvin.

Example What is the relationship between Farenheit and Kelvin
?

Solution
C = K − 273

and
C =

5
9

(F − 32)

giving
5
9

(F − 32) = K − 273

or

F =
9
5

(K − 273) + 32

=
9
5
K − 459.4

15.5 Thermal Expansion

Read.



15.6. TEMPERATURE AND HEAT 215

15.6 Temperature and Heat

Read very carefully.

15.7 The Absorption of Heat by Solids and Liq-
uids

Heat Capacity

If you put a certain amount of energy or heat into a block of wood then
the temperature will increase by a certain amount. If you do the same thing
to a lump of steel (of the same mass) its temperature increase will be larger
than for the wood. Heat capacity tells us how much the temperature of an
object will increase for a given amount of energy or heat input. It is defined
as

C ≡ Q

∆T

where C is the heat capacity, Q is the heat and ∆T is the temperature
change, or

Q = C(Tf − Ti)

Example Which has the largest heat capacity; wood or steel ?

Solution For a given Q then ∆T will be larger for steel. From
C = Q

∆T it means that C is small for steel and large for wood.
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Specific Heat

If we put a certain amount of heat into a small block of steel compared to
a large block then the small block will change its temperature the most. Thus
we also need to include the mass of the block in determining temperature
change. Thus we define specific heat (with a lower case c) as

c ≡ Q

m∆T

or
Q = cm(Tf − Ti)

In other words the specific heat is just the heat capacity per unit mass or

c =
C

m

Molar Specific Heat

Instead of defining specific heat with the mass of the object, we could
define it according to the total number of molecules in the object. But if
we write down the total number of molecules we will be writing down huge
numbers. Now we always use other words for huge numbers. Instead of
saying “one hundred tens” we say “thousand”, i.e.

thousand ≡ 1000

or instead of saying “one thousand thousands” we say “million”, i.e.

million ≡ 1, 000, 000

Now even million, billion and trillion are too small for the number of
molecules in an object. Thus define

mole ≡ 6.02× 1023

(This number arose because in 12 grams of 12C there is 1 mole of atoms.)
Thus molar specific heat is defined as

cm ≡
Q

N∆T

where N is the number of moles of molecules in the substance.
Table 19-3 in Halliday has a list of specific heats and molar specific heats

for various substances.
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Example How much heat is required to increase the tempera-
ture of 2 kg of water from 20◦C to 30◦C ?

Solution From Table 19-3 of Halliday, the specific heat of water
is 1.00 cal g−1K−1. Thus the temperature should be in ◦K. Now
∆T = 30◦C − 20◦C = 20◦C or

∆T = −243◦K −−253◦K = 10◦K

giving

Q = mc∆T
= 2kg × 1 cal g−1K−1 × 10 K
= 2000 g × 1 cal g−1K−1 × 10 K
= 20,000 cal = 83,720 J
= 20 kcal

where we have used 1 cal ≡ 4.186 J.
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Heats of Transformation

When you put heat or energy into an object the temperature does not
always change! For example, if you put heat into a block of ice at 0◦C it
may just melt to a pool of water still at 0◦C. Thus heat can cause a change
of phase. Putting heat into water at 100◦C may just vaporize the water to
steam at 100◦C. The heat of transformation L is defined via

Q ≡ Lm

where Q is the heat and m is the mass. If melting is involved L is called a
heat of fusion Lf or for vaporizing L is called a heat of vaporization Lv.

Exercise The latent heat of fusion for water is Lf = 333 kJ/kg
and the latent heat of vaporization is Lv = 2256 kJ/kg. Does it
take more heat to melt ice or vaporize water (of the same mass)?

Example How much heat is required to melt 2 kg of ice at 0◦C
to water at 0◦C ?

Solution The latent heat of fusion is Lf = 79.5 cal g−1 giving

Q = Lm

= 79.5 cal g−1× 2000 g
= 159,000 cal
= 159 kcal

Example Sample Problem 19-6 (Halliday). (done in class)

Example Sample Problem 19-7 (Halliday). (done in class)
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15.8 A Closer Look at Heat and Work

When discussing work and energy for thermodynamic systems it is useful to
think about compressing the gas in a piston, as shown in Fig. 19.1.

dx

F

FIGURE 19.1 Piston.

By pushing on the piston the gas is compressed, or if the gas is heated
the piston expands. Such pistons are crucial to the operation of automobile
engines. The gas consists of a mixture of gasoline which is compressed by the
piston. Sitting inside the chamber is a spark plug which ignites the gas and
pushes the piston out. The piston is connected to a crankshaft connecting
the auto engine to the wheels of the automobile.

Another such piston system is the simple bicycle pump. Recall our
definition of Work as

W ≡
∫
~F · d~s

For the piston, all the motion occurs in 1-dimension so that

W =
∫
F dx

(or equivalently ~F ·d~s = F dx cos 0◦ = F dx). The pressure of a gas is defined
as force divided by area (of the piston compressing the gas) or

p ≡ F

A

giving dW = pAdx = pdV where the volume is just area times distance or
dV = Adx. That is when we compress the piston by a distance dx, the
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volume of the gas changes by dV = Adx where A is the cross-sectional area
of the piston. Writing W =

∫
dW gives

W =
∫ Vf

Vi

p dV

which is the work done by a gas of pressure p changing its volume from Vi
to Vf (or the work done on the gas).

15.9 The First Law of Thermodynamics

We have already studied this! The first law of thermodynamics is nothing
more than a re-statement of the work energy theorem, which was

∆U + ∆K = WNC

Recall that the total work W was always W = ∆K. Identify heat Q as
Q ≡WNC and internal energy (such as energy stored in a gas, which is just
potential energy) is Eint ≡ U and we have

∆Eint +W = Q

or
∆Eint = Q−W

which is the first law of thermodynamics. The meaning of this law is that
the internal energy of a system can be changed by adding heat or doing
work. Often the first law is written for tiny changes as

dEint = dQ− dW
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15.10 Special Cases of 1st Law of Thermodynam-
ics

1. Adiabatic Processes

Adiabatic processes are those that occur so rapidly that there is no
transfer of heat between the system and its environment. Thus Q = 0 and

∆Eint = −W

For example if we push in the piston very quickly then our work will increase
the internal energy of the gas. It will store potential energy (∆U = ∆Eint)
like a spring and make the piston bounce back when we let it go.

2. Constant-volume Processes

If we glue the piston so that it won’t move then obviously the volume is
constant, and W =

∫
pdV = 0, because the piston can’t move. Thus

∆Eint = Q

which means the only way to increase the internal energy of the gas is by
adding heat Q.

3. Cyclical Processes

Recall the motion of a spring. It is a cyclical process in which the spring
oscillates back and forth. After one complete cycle the potential energy U
of the spring has not changed, thus ∆U = 0. Similarly we can push in the
piston, then let it go and it will push back to where it started, similar to
the spring. Thus ∆Eint = 0 and

Q = W

meaning that work done equals heat gained.

4. Free Expansion

Another way to get ∆Eint = 0 is for

Q = W = 0

Free expansion is illustrated in Fig. 19-15 [Halliday].
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Example Sample Problem 19-8 (Halliday). (done in class)

15.11 Heat Transfer Mechanisms

There are three basic processes by which heat is always transferred from one
body to another. These are

1) Convection

2) Conduction

3) Radiation

Students should carefully read Section 19.11 of Halliday.
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15.12 Problems

1. The coldest that any object can ever get is 0 K (or -273 C). It is rare for
physical quantities to have an upper or lower possible limit. Explain
why temperature has this lower limit.

2. Suppose it takes an amount of heat Q to make a cup of coffee. If you
make 3 cups of coffee how much heat is required?

3. How much heat is required to make a cup of coffee? Assume the mass
of water is 0.1 kg and the water is initially at 0◦C. We want the water
to reach boiling point.
Give your answer in Joule and calorie and Calorie.

(1 cal = 4.186 J; 1 Calorie = 1000 calorie.

For water: c = 1 cal
gC = 4186 J

kg C ; Lv = 2.26×106 J
kg ; Lf = 3.33×105 J

kg )

4. How much heat is required to change a 1 kg block of ice at −10◦C to
steam at 110◦C ?
Give your answer in Joule and calorie and Calorie.

(1 cal = 4.186 J; 1 Calorie = 1000 calorie.
cwater = 4186 J

kg C ; cice = 2090 J
kg C ; csteam = 2010 J

kg C

For water, Lv = 2.26× 106 J
kg ; Lf = 3.33× 105 J

kg )
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Chapter 16

KINETIC THEORY OF
GASES

SUGGESTED HOME EXPERIMENT:
Put a block of ice into an insulated container of water and measure the
temperature change. Is it what you expect ?

THEMES:
Behavior of a Gas.

225



226 CHAPTER 16. KINETIC THEORY OF GASES

16.1 A New Way to Look at Gases

The subject of classical thermodynamics, studied in the last chapter, was
developed in the 18th and 19th centuries before we knew about molecules and
atoms. The kinetic theory of gases attempts to explain all of the concepts of
classical thermodynamics, such as temperature and pressure, in terms of an
underlying microscopic theory based on atoms and molecules. For example,
we shall see that the temperature of a gas is related to the average kinetic
energy of all molecules in the gas.

16.2 Avagadro’s Number

One mole is the number of atoms in a 12 gram sample of 12C, and this
number is determine from experiment to be 6.02× 1023. This is often called
Avagadro’s number. The number of molecules must be the number of moles
times the number of molecules per mole. Thus we write Avagadro’s number
as

NA = 6.02× 1023 mole−1

and
N = nNA

where N is the number of molecules and n is the number of moles.

16.3 Ideal Gases

One of the most fundamental properties of any macroscopic system is the
so-called equation of state. This is the equation that specifies the exact
relation between pressure p, volume V , and temperature T for a substance.
The equation of state for a gas is very different to the equation of state of
a liquid. Actually there is a giant accelerator, called the Relativistic Heavy
Ion Collider (RHIC) currently under construction at Brookhaven National
Laboratory on Long Island. This accelerator will collide heavy nuclei into
each other at extremely high energies. One of the main aims is to determine
the nuclear matter equation of state at very high temperatures and densities,
simulating the early universe.

Now it turns out that most gases obey a simple equation of state called
the ideal gas law

pV = nRT
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where p is the pressure, V is the volume, T is the temperature (in ◦K), n is
the number of moles of the gas and R is the so called gas constant with the
value

R = 8.31 J mol−1 K−1

Recall that the number of molecules is given by N = nNA where n is the
number of moles. Thus pV = nRT = N

NA
RT and define Boltzmann’s con-

stant

k ≡ R

NA
=

8.31J mole−1K−1

6.02× 1023 mole−1

= 1.38× 10−23 JK−1

= 8.62× 10−5 eV K−1

where an electron volt is defined as

eV ≡ 1.6× 10−19 J

Thus the ideal gas law is also often written as

pV = NkT

where N is the total number of molecules.
The ideal gas law embodies exactly the properties we expect of a gas:

1) If the volume V is held constant, then the pressure p increases as
temperature T increases.

2) If the pressure p is held constant, then as T increases, p increases.

3) If the temperature T is held constant, then as p increases, V decreases.

LECTURE DEMONSTRATIONS: Show this

Work Done by an Ideal Gas

The equation of state can be represented on a graph of pressure vs.
volume, often called a pV diagram. Remember an equation of state is an
equation relating the three variables p, V , T . A pV diagram takes care of two
variables. The third variable T represents different lines on the pV diagram.
These difference lines are called isotherms (meaning same temperature). An
example is given in Fig.20-1 [Halliday]. For fixed T (say 310 K) the pressure
is inversely proportional to volume as specified in the ideal gas law. Fig.
20-1 [Halliday] would look different for an equation of state different from
the ideal gas law.
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Example What is the work done by any gas (ideal or not) at
constant volume (isometric) ?

Solution If Vi = Vf then

W =
∫ Vf

Vi

pdV = 0

which is obvious when we think of the piston in the previous
chapter. If the volume does not change then the piston doesn’t
move and the work is zero.

Example Derive a formula for the work done by any gas (ideal
or not) which expands isobarically (i.e. at constant pressure).

Solution If p is a constant it can be taken outside the integral,
giving

W =
∫ Vf

Vi

pdV

= p

∫ Vf

Vi

dV

= p [V ]VfVi
= p(Vf − Vi)
= p∆V
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Example Derive a formula for the work done by a gas when it
expands isothermally (i.e. at constant temperature).

Solution The work done by an expanding gas is given by

W =
∫ Vf

Vi

pdV

But this time the pressure changes. For an ideal gas we have
p = nRT

V giving

W = nRT

∫ Vf

Vi

1
V
dV

= nRT [lnV ]VfVi
= nRT (lnVf − lnVi)

= nRT ln
(
Vf
Vi

)

Carefully study Sample Problems 20-1, 20-2 in Halliday.
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16.4 Pressure, Temperature and RMS Speed

Carefully study Section 20.4 in Halliday.
Now consider our first kinetic theory problem. Imagine a gas, consisting

of n moles being confined to a cubical box of volume V . “What is the
connection between the pressure p exerted by the gas on the walls and the
speeds of the molecules?” (Halliday Pg. 487) Pressure is defined as Force
divided by Area or p ≡ F

A where F = dp
dt . Using Newtonian Mechanics,

Halliday (Pg. 488) shows that

p =
nMv2

RMS

3V

where n is the number of moles, M is the mass of 1 mole of the gas (so
that nM is the total mass of the gas), vRMS is the average speed of the
molecules and V is the volume of the gas. The above equation is derived
purely from applying Newtonian mechanics to the individual molecules. All
students should study the derivation in Halliday (Pg. 488) carefully.

Now by comparing to the ideal gas law pV = nRT or p = nRT
V we must

have nMv2
RMS
3 = nRT or

vRMS =

√
3RT
M

which shows that the temperature T is related to the speed of molecules!
As shown in Table 20-1 (Halliday) the speed of molecules at room tem-

perature is very large; about 500 m/sec for air (about 1000 mph).
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16.5 Translational Kinetic Energy

For a single molecule its average kinetic energy is

K̄ =
1
2
mv2

RMS

and using vRMS =
√

3RT
M gives K̄ = 1

2m
3RT
M .

Remember that M is the molar mass, which is the mass of 1 mole of gas
and m is the mass of the molecule. Thus M

m = 1 mole = 6.02 ×1023 = NA,
Avagadro’s number. Thus K̄ = 3RT

2NA
or

K̄ =
3
2
kT

This is a very interesting result. For a given temperature T , all gas molecules,
no matter what their mass, have the same average translational kinetic en-
ergy.

Example In the center of the Sun the particles are bare hydro-
gen nuclei (protons). Calculate their average kinetic energy.

Solution The center of the Sun is at a temperature of about
20,000,000◦K. Thus

K̄ =
3
2
kT

=
3
2
× 8.62× 10−8 eV

K
× 20× 106K

= 2586 eV
≈ 3 MeV
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16.6 Mean Free Path

Even though room temperature air molecules have a large RMS speed
vRMS ≈ 500 m/sec, that does not mean that they move across a room
in a fraction of a second. If you open a bottle of perfume at one end of
a room, it takes a while for you to notice the smell at the other end of
the room. This is because the molecules undergo an enormous number of
collisions on their way across the room, as shown very nicely in Fig. 20-4
(Halliday).

The mean free path λ is the average distance that a molecule travels in
between collisions. It is given by

λ =
1√

2πd2N/V

where d is the average diameter of a molecule, and N/V is the average
number of molecules per unit volume. This formula is discussed on Pages
490-491 (Halliday).

16.7 Distribution of Molecular Speeds

Not all molecules travel at the speed vRMS . this is just the average molecular
speed. We would like to know how many molecules travel above or below
this speed. This was worked out by Maxwell. The probbility of a given speed
is

P (v) = 4π
(

M

2πRT

)3/2

v2 e−
Mv2

2RT

where M is the molar mass of the gas. This probability distribution is
plotted in Fig. 20-7 (Halliday).
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16.8 Problems

1.

A) If the number of molecules in an ideal gas is doubled, by how much does
the pressure change if the volume and temperature are held constant?

B) If the volume of an ideal gas is halved, by how much does the pressure
change if the temperature and number of molecules is constant?

C) If the temperature of an ideal gas changes from 200 K to 400 K, by how
much does the volume change if the pressure and number of molecules
is constant.

D) Repeat part C) if the temperature changes from 200 C to 400 C.

2. If the number of molecules in an ideal gas is doubled and the volume
is doubled, by how much does the pressure change if the temperature
is held constant ?

3. If the number of molecules in an ideal gas is doubled, and the absolute
temperature is doubled and the pressure is halved, by how much does
the volume change ?
(Absolute temperature is simply the temperature measured in Kelvin.)
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Chapter 17

Review of Calculus

17.1 Derivative Equals Slope

17.1.1 Slope of a Straight Line

All students will be familiar with the equation for a straight line

y(x) = mx+ c (17.1)

where c is the intercept on the y axis and m is the slope of the line. To
prove to ourselves that m really is the slope, we need a good definition of
slope. Let’s define

Slope ≡ ∆y
∆x
≡ yf − yi
xf − xi

(17.2)

where ∆y is the difference between final and initial values yf and yi. In Fig.
22.1 the graph of y(x) = 2x+1 is plotted and the slope has been determined
by measuring ∆y and ∆x.

Rather than always having to verify the slope graphically, let’s do it
analytically for all lines. Take xi = x as the initial x value and xf = x+ ∆x
as the final value. Obviously xf − xi = ∆x. The initial value of y is

yi ≡ y(xi) = mxi + c

= mx+ c (17.3)

and the final value is

yf ≡ y(xf ) = mxf + c

= y(x+ ∆x) = m(x+ ∆x) + c (17.4)

235
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Thus ∆y = yf − yi = m(x+ ∆x) + c−mx− c = m∆x. Therefore the slope
becomes

∆y
∆x

=
m∆x
∆x

= m (17.5)

which is a proof that y = mx+ c has a slope of m.
From above we can re-write our formula (17.2) using yf = y(x + ∆x)

and yi = y(x), so that

Slope ≡ ∆y
∆x

=
yf − yi
xf − xi

=
y(x+ ∆x)− y(x)

∆x
(17.6)

17.1.2 Slope of a Curve

A straight line always has constant slope m. That’s why it’s called straight.
The parabola y(x) = x2 + 1 is plotted in Fig. 22.2 and obviously the slope
changes. In fact the concept of the slope of a parabola doesn’t make any
sense because the parabola continuously curves. However we might think
about little pieces of the parabola. If you look at any tiny little piece it looks
straight. These tiny little pieces are all tiny little line segments, each with
their own slope. Notice that the slope of the tiny little line segments keeps
changing. At x = 0 the slope is 0 (the tiny little line is flat) whereas around
x = 1 the slope is larger.

One of the most important ideas in calculus is the concept of the deriva-
tive, which is nothing more than

Derivative = Slope of tiny little line segment.

In Fig. 22.1 we got the slope from ∆y and ∆x on the large triangle in the
top right hand corner. But we would get the same answer if we had used the
tiny triangles in the bottom left hand corner. What characterizes these tiny
triangles is that ∆x and ∆y are both tiny (but their ratio, ∆y

∆x = 2 always).
Another way of saying that ∆x is tiny is to say

Tiny = lim
∆x→0

That is the limit as ∆x goes to zero is another way of saying ∆x is tiny.

Examples

1) lim
∆x→0

[∆x+ 3] = 3

2) lim
∆x→0

∆x = 0
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3) lim
∆x→0

[(∆x)2 + 4] = 4

4) lim
∆x→0

(∆x)2 + 4∆x
∆x

= lim
∆x→0

(∆x+ 4) = 4

5) lim
∆x→0

3 = 3

For a curve like the parabola we can’t draw a big triangle, as in Fig.
22.1, because the hypotenuse would be curved. But we can get the slope at
a point by drawing a tiny triangle at that point. Thus let’s define the

Slope of
curve at
a point

≡ lim
∆x→0

∆y
∆x

=
Slope of tiny
little line
segment

≡ Derivative

So it’s the same definition as before in (17.6) except lim
∆x→0

is an instruction

to use a tiny triangle. Now ∆y
∆x = y(x+∆x)−y(x)

∆x from (17.6) and the derivative
is given a fancy new symbol dy

dx so that

dy

dx
≡ lim

∆x→0

y(x+ ∆x)− y(x)
∆x

(17.7)

The symbol dy simply means

dy ≡ tiny ∆y

That is, usually ∆y can be big or small. If we are talking about a tiny ∆y
we write dy instead. Similarly for ∆x.

Example Calculate the derivative of the straight line y(x) = 3x
Solution y(x) = 3x

y(x+ ∆x) = 3(x+ ∆x)

dy

dx
= lim

∆x→0

3(x+ ∆x)− 3x
∆x

= lim
∆x→0

3x+ 3∆x− 3x
∆x

= lim
∆x→0

3∆x
∆x

= lim
∆x→0

3 = 3

Thus the derivative is the slope.
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Example Calculate the derivative of the straight line y(x) = 4
Solution y(x) = 4

y(x+ ∆x) = 4

dy

dx
= lim

∆x→0

4− 4
∆x

= 0

The line y(x) = 4 has 0 slope and therefore 0 derivative.

(do Problem 1)

The derivative was defined to give us the slope of a curve at a point. The
two examples above show that it also works for a straight line (A straight
line is a special case of a curve). Now do some examples for real curves.

Example Calculate the derivative of the parabola y(x) = x2

Solution y(x) = x2

y(x+ ∆x) = (x+ ∆x)2

= x2 + 2x∆x+ (∆x)2

dy

dx
= lim

∆x→0

y(x+ ∆x)− y(x)
∆x

= lim
∆x→0

x2 + 2x∆x+ (∆x)2 − x2

∆x
= lim

∆x→0
(2x+ ∆x)

= 2x

Example Calculate the slope of the parabola y(x) = x2 at the points x =
−2, x = 0, x = 3.
Solution We already have dy

dx = 2x. Thus

dy

dx

∣∣∣∣
x=−2

= −4

dy

dx

∣∣∣∣
x=0

= 0

dy

dx

∣∣∣∣
x=3

= 6
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which shows how the slope of a tiny little line segment varies as we move
along the parabola.

Example Calculate the slope of the curve y(x) = x2 + 1 (see Fig. 22.2) at
the points x = −2, x = 0, x = 3
Solution y(x) = x2 + 1

y(x+ ∆x) = (x+ ∆x)2 + 1
= x2 + 2x∆x+ (∆x)2 + 1

dy

dx
= lim

∆x→0

y(x+ ∆x)− y(x)
∆x

= lim
∆x→0

x2 + 2x∆x+ (∆x)2 + 1− (x2 + 1)
∆x

= lim
∆x→0

2x+ ∆x

= 2x

Thus the slopes are the same as in the previous example.

(do Problem 2)

17.1.3 Some Common Derivatives

In a previous example we saw that the derivative of y(x) = 4 was dy
dx = 0,

which make sense because a graph of y(x) = 4 reveals that the slope is
always 0. This is true for any constant c. Thus

dc

dx
= 0 (17.8)

We also saw in a previous example that d
dxx

2 = 2x. In general we have

dxn

dx
= nxn−1 (17.9)

This is a very important result. We have already verified it for n = 2. Let’s
verify it for n = 3.

Example Check that (17.9) is correct for n = 3.

Solution Formula (17.9) gives

dx3

dx
= 3x3−1 = 3x2
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We wish to verify this. Take y(x) = x3.

y(x+ ∆x) = (x+ ∆x)3

= x3 + 3x2∆x+ 3x(∆x)2 + (∆x)3

dy

dx
= lim

∆x→0

y(x+ ∆x)− y(x)
∆x

= lim
∆x→0

x3 + 3x2∆x+ 3x(∆x)2 + (∆x)3 − x3

∆x
= lim

∆x→0
3x2 + 3x∆x+ (∆x)2

= 3x2 in agreement with our result above.

(do Problem 3)
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A list of very useful results for derivatives is given below. You will prove
most of these results in your calculus course. I will just make some comments
about them.

Table A-4 Properties of Derivatives and Derivatives of Particular
Functions [Tipler, pg. AP-16, 1991].

Multiplicative constant rule

1. The derivative of a constant times a function equals the constant times
the derivative of the function:

d

dx
[Cy(x)] = C

dy(x)
dx

Addition rule

2. The derivative of a sum of functions equals the sum of the derivatives of
the functions:

d

dx
[y(x) + z(x)] =

dy(x)
dx

+
dz(x)
dx

Chain rule

3. If y is a function of x and x is in turn a function of t, the derivative of y
with respect to t equals the product of the derivative of y with respect to z
and the derivative of z with respect to x:

d

dx
y(x) =

dy

dz

dz

dx

Derivative of a product

4. The derivative of a product of functions y(x)z(x) equals the first func-
tion times the derivative of the second plus the second function times the
derivative of the first:

d

dx
[y(x)z(x)] = y(x)

dz(x)
dx

+
dy(x)
dx

z(x)
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Reciprocal derivative

5. The derivative of y with respect to x is the reciprocal of the derivative of
x with respect to y, assuming that neither derivative is zero:

dy

dx
=
(
dx

dy

)−1

if
dx

dy
6= 0

Derivatives of particular functions

6.
dC

dx
= 0 where C is a constant 10.

d

dx
tanωx = ω sec2 ωx

7.
d(xn)
dx

= nxn−1 11.
d

dx
ebx = bebx

8.
d

dx
sinωx = ω cosωx 12.

d

dx
ln bx =

1
x

9.
d

dx
cosωx = −ω sinωx

Multiplicative constant rule Example
d

dx
[Cy(x)] = C

dy(x)
dx

.

This just means, for example, that

d

dx
(3x2) = 3

dx2

dx
= 3× 2x = 6x

(do Problem 4).

Addition rule Example
d

dx
[y(x) + z(x)] =

dy(x)
dx

+
dz(x)
dx
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Take for example y(x) = x and z(x) = x2. This rule just means

d

dx
(x+ x2) =

dx

dx
+
dx2

dx
= 1 + 2x

(do Problem 5)

Chain Rule
dy

dx
=
dy

dz

dz

dx

(A rough “proof” of this is to just note that the dz cancels in the numerator
and denominator.) The use of the chain rule is best seen in the following
example, where y is not given as a function of x.

Example Verify the chain rule for y = z3 and z = x2.

Solution We have y(z) = z3 and z(x) = x2. Thus y(x) = x6.

.. .
dy

dx
= 6x5

dy

dz
= 3z2

dz

dx
= 2x

Now dy
dz

dz
dx = (3z2)(2x) = (3x4)(2x) = 6x5. Thus we see that dy

dx = dy
dz

dz
dx .

Product Rule
d

dx
[y(x)z(x)] = y(x)

dz(x)
dx

+
dy(x)
dx

z(x)

The use of this arises when multiplying two functions together as illus-
trated in the next example.

Example If y(x) = x3 and z(x) = x2, verify the product rule.

Solution y(x)z(x) = x5

⇒ d

dx
[y(x)z(x)] =

dx5

dx
= 5x4

Now let’s show that the product rule gives the same answer.

y(x)
dz(x)
dx

= x3dx
2

dx
= x32x = 2x4
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dy(x)
dx

z(x) =
dx3

dx
x2 = 3x2x2 = 3x4

y(x)
dz(x)
dx

+
dy(x)
dx

z(x) = 2x4 + 3x4 = 5x4

in agreement with our answer above.

(do Problem 6)
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17.1.4 Extremum Value of a Function

A final important use of the derivative is that it can be used to tell us when
a function attains a maximum or minimum value. This occurs when the
derivative or slope of the function is zero.

Example What are the (x, y) coordinates of the place where the parabola
y(x) = x2 + 3 has its minimum value?

Solution The minimum value occurs where the slope is 0. Thus

0 =
dy

dx
=

d

dx
(x2 + 3) = 2x

.. . x = 0
y = x2 + 3 .. . y = 3

Thus the minimum is at (x, y) = (0, 3). You can verify this by plotting a
graph.

(do Problem 7)
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17.2 Integral

17.2.1 Integral Equals Antiderivative

The derivative of y(x) = 3x is dy
dx = 3. The derivative of y(x) = x2 is

dy
dx = 2x. The derivative of y(x) = 5x3 is dy

dx = 15x2.
Let’s play a game. I tell you the answer and you tell me the question.

Or I tell you the derivative dy
dx and you tell me the original function y(x)

that it came from. Ready?

If
dy

dx
= 3 then y(x) = 3x

If
dy

dx
= 2x then y(x) = x2

If
dy

dx
= 15x2 then y(x) = 5x3

We can generalize this to a rule.

If
dy

dx
= xn then y(x) =

1
n+ 1

xn+1

Actually I have cheated. Let’s look at the following functions

y(x) = 3x+ 2
y(x) = 3x+ 7
y(x) = 3x+ 12
y(x) = 3x+ C (C is an arbitrary constant)
y(x) = 3x

All of them have the same derivative dy
dx = 3. Thus in our little game of

re-constructing the original function y(x) from the derivative dy
dx there is

always an ambiguity in that y(x) could always have some constant added to
it.

Thus the correct answers in our game are

If
dy

dx
= 3 then y(x) = 3x+ constant

(Actually instead of always writing constant, let me just write C)
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If
dy

dx
= 2x then y(x) = x2 + C

If
dy

dx
= 15x2 then y(x) = 5x3 + C

If
dy

dx
= xn then y(x) =

1
n+ 1

xn+1 + C.

This original function y(x) that we are trying to get is given a special
name called the antiderivative or integral, but it’s nothing more than the
original function.

17.2.2 Integral Equals Area Under Curve

Let’s see how to extract the integral from our original definition of derivative.
The slope of a curve is ∆y

∆x or dy
dx when the ∆ increments are tiny. Notice

that y(x) is a function of x but so also is dy
dx . Let’s call it

f(x) ≡ dy

dx
=

∆y
∆x

(17.10)

Thus if f(x) = dy
dx = 2x then y(x) = x2 + C, and similarly for the other

examples.
In equation (17.10) I have written ∆y

∆x also because dy
dx is just a tiny

version of ∆y
∆x .

Obviously then
∆y = f ∆x (17.11)

or
dy = f dx (17.12)

What happens if I add up many ∆y’s. For instance suppose you are aged
18. Then if I add up many age increments in your life, such as

Age = ∆Age1 + ∆Age2 + ∆Age3 + ∆Age4 · · ·
1 year + 3 years + 0.5 year + 5 years + 0.5 year + 5 years + 3 years

= 18 years

I get your complete age. Thus if I add up all possible increments of ∆y I
get back y. That is

y = ∆y1 + ∆y2 + ∆y3 + ∆y4 + · · ·

or symbolically
y =

∑
i

∆yi (17.13)
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where
∆yi = fi ∆xi (17.14)

Now looking at Fig. 22.3 we can see that the area of the shaded section is
just fi∆xi. Thus ∆yi is an area of a little shaded region. Add them all up
and we have the total area under the curve. Thus

Area under
curve f(x)

=
∑
i

fi∆xi =
∑
i

∆yi
∆xi

∆xi =
∑
i

∆yi = y (17.15)

Let’s now make the little intervals ∆yi and ∆xi very tiny. Call them dy
and dx. If I am using tiny intervals in my sum

∑
I am going to use a new

symbol
∫

. Thus

Area =
∫
fdx =

∫
dy

dx
dx =

∫
dy = y (17.16)

which is just the tiny version of (17.15). Notice that the dx “cancels”.
In formula (17.16) recall the following. The derivative is f(x) ≡ dy

dx
and y is my original function which we called the integral or antiderivative.
We now see that the integral or antiderivative or original function can be
interpreted as the area under the derivative curve f(x) ≡ dy

dx .
By the way

∫
f dx reads “integral of f with respect to x.”

Summary: if f =
dy

dx
⇒ y =

∫
f dx

Summary of 1.2.1 and 1.2.2

y(x) = x2 dy

dx
= 2x ≡ f(x)

y(x) = x2 + 4
dy

dx
= 2x ≡ f(x)

⇒ if f(x) ≡ dy

dx
= 2x⇒ y(x) = x2 + c

f(x) =
dy

dx
=

∆y
∆x

∆y = f∆x dy = f dx

y =
∑
i

∆yi =
∫
dy
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=
∑
i

fi∆xi =
∫
f dx

= Area under curve f(x)
= Antiderivative

y =
∫
f dx

E.g. ∫
2x dx = x2 + c

do a few more examples.

Example What is
∫
x dx?

Solution The derivative function is f(x) = dy
dx = x. Therefore the original

function must be 1
2x

2 + c. Thus∫
x dx =

1
2
x2 + c

(do Problem 8)

17.2.3 Definite and Indefinite Integrals

The integral
∫
x dx is supposed to give us the area under the curve x, but

our answer in the above example (1
2x

2 + c) doesn’t look much like an area.
We would expect the area to be a number.

Example What is the area under the curve f(x) = 4 between x1 = 1 and
x2 = 6?

Solution This is easy because f(x) = 4 is just a horizontal straight line as
shown in Fig. 22.4. The area is obviously 4× 5 = 20.

Consider
∫

4dx = 4x + c. This is called an indefinite integral or an-
tiderivative. The integral which gives us the area is actually the definite
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integral written∫ x2

x1

4dx ≡ [4x+ c]x2
x1
≡ (4x2 + c)− (4x1 + c)

= [4x]x2
x1

= 4x2 − 4x1 (17.17)

Let’s explain this. The formula 4x+c by itself does not give the area directly.
For an area we must always specify x1 and x2 (see Fig. 22.4) so that we know
what area we are talking about. In the previous example we got 4× 5 = 20
from 4x2 − 4x1 = (4 × 6) − (4 × 1) = 24 − 4 = 20, which is the same as
(17.17). Thus (17.17) must be the correct formula for area. Notice here that
it doesn’t matter whether we include the c because it cancels out.

Thus
∫

4dx = 4x + c is the antiderivative or indefinite integral and it
gives a general formula for the area but not the value of the area itself. To
evaluate the value of the area we need to specify the edges x1 and x2 of the
area under consideration as we did in (17.17). Using (17.17) to work out
the previous example we would write∫ 6

1
4dx = [4x+ c]61 = [(4× 6) + c]− [(4× 1) + c]

= 24 + c− 4− c
= 24− 4 = 20 (17.18)

Example Evaluate the area under the curve f(x) = 3x2 between x1 = 3
and x2 = 5.

Solution ∫ 5

3
3x2dx = [x3 + c]53

= (125 + c)− (27 + c) = 98

(do Problem 9)
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Figure 22.1 Plot of the graph y(x) = 2x+ 1. The slope ∆y
∆x = 2.
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Figure 22.2 Plot of y(x) = x2 + 1. Some tiny little pieces are indicated,
which look straight.
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Figure 22.3 A general function f(x). The area under the shaded rectangle
is approximately fi∆xi. The total area under the curve is therefore

∑
i
fi∆xi.

If the ∆xi are tiny then write ∆xi = dx and write
∑
i

=
∫

. The area is then∫
f(x)dx.
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Figure 22.4 Plot of f(x) = 4. The area under the curve between x1 = 1
and x2 = 6 is obviously 4× 5 = 20.
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17.3 Problems

1. Calculate the derivative of y(x) = 5x+ 2.

2. Calculate the slope of the curve y(x) = 3x2 + 1 at the points x = −1,
x = 0 and x = 2.

3. Calculate the derivative of x4 using the formula dxn

dx = nxn−1. Verify
your answer by calculating the derivative from dy

dx = lim
∆x→0

y(x+∆x)−y(x)
∆x .

4. Prove that d
dx(3x2) = 3dx

2

dx .

5. Prove that d
dx(x+ x2) = dx

dx + dx2

dx .

6. Verify the chain rule and product rule using some examples of your
own.

7. Where do the extremum values of y(x) = x2 − 4 occur? Verify your
answer by plotting a graph.

8. Evaluate
∫
x2dx and

∫
3x3dx.

9. What is the area under the curve f(x) = x between x1 = 0 and x2 = 3?
Work out your answer i) graphically and ii) with the integral.
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